Recent Trends in Potential Therapeutic Applications of the Dietary Flavonoid Didymin

Qing Yao, Meng-Ting Lin, Yin-Di Zhu, He-Lin Xu, Ying-Zheng Zhao, Qing Yao, Meng-Ting Lin, Yin-Di Zhu, He-Lin Xu, Ying-Zheng Zhao

Abstract

Didymin (isosakuranetin 7-O-rutinoside) is an orally bioactive dietary flavonoid glycoside first found in citrus fruits. Traditionally, this flavonoid has long been used in Asian countries as a dietary antioxidant. Recent studies have provided newer insights into this pleiotropic compound, which could regulate multiple biological activities of many important signaling molecules in health and disease. Emerging data also presented the potential therapeutic application of dietary flavonoid glycoside didymin against cancer, neurological diseases, liver diseases, cardiovascular diseases, and other diseases. In this review, we briefly introduce the source and extraction methods of didymin, and summarize its potential therapeutic application in the treatment of various diseases, with an emphasis on molecular targets and mechanism that contributes to the observed therapeutic effects. The dietary flavonoid didymin can be used to affect health and disease with multiple therapeutic targets, and it is anticipated that this review will stimulate the future development of this potential dietary medicine.

Keywords: cancer; didymin; dietary flavonoid glycoside; neurodegenerative disorders; therapeutic effects.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Structure and basic properties of didymin. (A) The chemical structure of didymin. (B) Major physical and chemical properties.
Figure 2
Figure 2
Therapeutic application of didymin in promoting the health. The green arrow indicates the promoted effect of didymin. The red arrow indicates the inhibitory effect of didymin.
Figure 3
Figure 3
Didymin is involved in lung cancer cell signaling pathways. The main pathway of apoptosis of A549 and H460 cells induced by didymin is the Fas/Fas ligand apoptotic system. Fas is a cell surface receptor when its ligand (FasL) recognizes and activates Fas; it leads to oligomerization of the intracellular death domain and recruitment of the intracellular adaptor Fas-associated death domain (FADD). After binding, FADD can activate procaspase-8 and procaspase-10 in the death-inducing signaling complex, causing A549 and H460 cells apoptosis or death without the mediation of p53 and p21/WAF1.
Figure 4
Figure 4
Didymin affects neuroblastoma signaling pathways. Stimulating the expression of RKIP is a key role for didymin to exert its efficacy. Also, didymin inhibits N-Myc transcription, on the other hand, didymin decreases the expression levels of PI3K, Akt, vimentin, and down-regulates cyclin D1, B1, and CDK4. By staining the pathological sections of the tumor tissue, didymin not only reduced the expression of the angiogenesis marker CD31 in vivo but also inhibited the expression of the proliferation markers Ki67 and N-Myc. The blue arrow indicates normal signal transduction, the green arrow indicates enhancement, and the red arrow represents inhibition.

References

    1. Hung J.Y., Chang W.A., Tsai Y.M., Hsu Y.L., Chiang H.H., Chou S.H., Huang M.S., Kuo P.L. Tricetin, a dietary flavonoid, suppresses benzo(a)pyreneinduced human nonsmall cell lung cancer bone metastasis. Int. J. Oncol. 2015;46:1985–1993. doi: 10.3892/ijo.2015.2915.
    1. Cao H., Chen X., Jassbi A.R., Xiao J. Microbial biotransformation of bioactive flavonoids. Biotechnol. Adv. 2015;33:214–223. doi: 10.1016/j.biotechadv.2014.10.012.
    1. Fletcher J.I., Ziegler D.S. Too many targets, not enough patients: Rethinking neuroblastoma clinical trials. Nat. Rev. Cancer. 2018;18:389–400. doi: 10.1038/s41568-018-0003-x.
    1. Simmons D. Citrus Fruits: Production, Consumption and Health Benefits. Nova Science Publishers; New York, NY, USA: 2016.
    1. Ibrahim S.R.M., Mohamed G.A., Al Haidari R.A., El-Kholy A.A., Zayed M.F., Khayat M.T. Biologically active fungal depsidones: Chemistry, biosynthesis, structural characterization, and bioactivities. Fitoterapia. 2018;129:317–365. doi: 10.1016/j.fitote.2018.04.012.
    1. Miranda J., Lasa A., Aguirre L., Fernandez-Quintela A., Milton I., Portillo M.P. Potential application of non-flavonoid phenolics in diabetes: Antiinflammatory effects. Curr. Med. Chem. 2015;22:112–131. doi: 10.2174/0929867321666140815123507.
    1. Gentile D., Fornai M., Pellegrini C., Colucci R., Blandizzi C., Antonioli L. Dietary flavonoids as a potential intervention to improve redox balance in obesity and related co-morbidities: A review. Nutr. Res. Rev. 2018:1–9. doi: 10.1017/S0954422418000082.
    1. Sureda A., Xavier C., Tejada S. Neuroprotective effects of flavonoid compounds on neuronal death associated to alzheimer’s disease. Curr. Med. Chem. 2017 doi: 10.2174/0929867325666171226103237.
    1. Hermsdorff H.H., Barbosa K.B., Volp A.C., Puchau B., Bressan J., Zulet M.A., Martinez J.A. Vitamin c and fibre consumption from fruits and vegetables improves oxidative stress markers in healthy young adults. Br. J. Nutr. 2012;107:1119–1127. doi: 10.1017/S0007114511004235.
    1. Tang S.N., Fu J., Nall D., Rodova M., Shankar S., Srivastava R.K. Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int. J. Cancer. 2012;131:30–40. doi: 10.1002/ijc.26323.
    1. Harris D.M., Li L., Chen M., Lagunero F.T., Go V.L.W., Boros L.G. Diverse mechanisms of growth inhibition by luteolin, resveratrol, and quercetin in mia paca-2 cells: A comparative glucose tracer study with the fatty acid synthase inhibitor c75. Metabolomics. 2012;8:201–210. doi: 10.1007/s11306-011-0300-9.
    1. Latif R. Flavonoids as novel neuroprotective nutraceuticals. Saudi J. Health Sci. 2015;4:1–4. doi: 10.4103/2278-0521.151402.
    1. Putteeraj M., Lim W.L., Teoh S.L., Yahaya M.F. Flavonoids and its neuroprotective effects on brain ischemia and neurodegenerative diseases. Curr. Drug Targets. 2018 doi: 10.2174/1389450119666180326125252.
    1. Du G., Zhao Z., Chen Y., Li Z., Tian Y., Liu Z., Liu B., Song J. Quercetin protects rat cortical neurons against traumatic brain injury. Mol. Med. Rep. 2018;17:7859–7865. doi: 10.3892/mmr.2018.8801.
    1. Andersen O.M., Markham K.R. Flavonoids: Chemistry, Biochemistry and Applications. CRC Press; Boca Raton, FL, USA: 2006.
    1. Singhal S.S., Singhal S., Singhal P., Singhal J., Horne D., Awasthi S. Didymin: An orally active citrus flavonoid for targeting neuroblastoma. Oncotarget. 2017;8:29428–29441. doi: 10.18632/oncotarget.15204.
    1. Hung J.Y., Hsu Y.L., Ko Y.C., Tsai Y.M., Yang C.J., Huang M.S., Kuo P.L. Didymin, a dietary flavonoid glycoside from citrus fruits, induces fas-mediated apoptotic pathway in human non-small-cell lung cancer cells in vitro and in vivo. Lung Cancer. 2010;68:366–374. doi: 10.1016/j.lungcan.2009.08.013.
    1. Jeon S.M., Bok S.H., Jang M.K., Lee M.K., Nam K.T., Park Y.B., Rhee S.J., Choi M.S. Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits. Life Sci. 2001;69:2855–2866. doi: 10.1016/S0024-3205(01)01363-7.
    1. Lin X., Bai F., Nie J., Lu S., Lu C., Zhu X., Wei J., Lu Z., Huang Q. Didymin alleviates hepatic fibrosis through inhibiting erk and pi3k/akt pathways via regulation of raf kinase inhibitor protein. Cell. Physiol. Biochem. 2016;40:1422–1432. doi: 10.1159/000453194.
    1. Massenti R., Lo Bianco R., Sandhu A.K., Gu L., Sims C. Huanglongbing modifies quality components and flavonoid content of ‘valencia’ oranges. J. Sci. Food Agric. 2014;96:73–78. doi: 10.1002/jsfa.7061.
    1. Chaudhary P.R., Yu X., Jayaprakasha G.K., Patil B.S. Influence of storage temperature and low-temperature conditioning on the levels of health-promoting compounds in rio red grapefruit. Food Sci. Nutr. 2016;5:545–553. doi: 10.1002/fsn3.429.
    1. Zhu Y.-D., Zhang J.-Y., Li P.-F., Wu H.-F., Zhu N.-L., Jiang H., Lv C.-Y., Wu L.-L., Ma Z.-X., Xu X.-D., et al. Two new abietane diterpenoid glycosides from clinopodium chinense. Nat. Prod. Res. 2016;30:1075–1080. doi: 10.1080/14786419.2015.1107061.
    1. Calabrò M.L., Galtieri V., Cutroneo P., Tommasini S., Ficarra P., Ficarra R. Study of the extraction procedure by experimental design and validation of a lc method for determination of flavonoids in citrus bergamia juice. J. Pharm. Biomed. 2004;35:349–363. doi: 10.1016/S0731-7085(03)00585-5.
    1. Gattuso G., Barreca D., Gargiulli C., Leuzzi U., Caristi C. Flavonoid composition of citrus juices. Molecules. 2007;12:1641–1673. doi: 10.3390/molecules12081641.
    1. Wang X., Zhao X., Gu L., Lv C., He B., Liu Z., Hou P., Bi K., Chen X. Simultaneous determination of five free and total flavonoids in rat plasma by ultra hplc-ms/ms and its application to a comparative pharmacokinetic study in normal and hyperlipidemic rats. J. Chromatogr. B. 2014;953:1–10. doi: 10.1016/j.jchromb.2014.01.042.
    1. Mouly P., Gaydou E.M., Auffray A. Simultaneous separation of flavanone glycosides and polymethoxylated flavones in citrus juices using liquid chromatography. J. Chromatogr. A. 1998;800:171–179. doi: 10.1016/S0021-9673(97)01131-X.
    1. Sun Y., Wang J., Gu S., Liu Z., Zhang Y., Zhang X. Simultaneous determination of flavonoids in different parts of citrus reticulata ‘chachi’ fruit by high performance liquid chromatography—Photodiode array detection. Molecules. 2010;15:5378–5388. doi: 10.3390/molecules15085378.
    1. Abad-García B., Garmón-Lobato S., Berrueta L.A., Gallo B., Vicente F. A fragmentation study of dihydroquercetin using triple quadrupole mass spectrometry and its application for identification of dihydroflavonols in citrus juices. Rapid Commun. Mass Spectrom. 2010;23:2785–2792. doi: 10.1002/rcm.4182.
    1. Dugo P., Presti M.L., Ohman M., Fazio A., Dugo G., Mondello L. Determination of flavonoids in citrus juices by micro-hplc-esi/ms. J. Sep. Sci. 2015;28:1149–1156. doi: 10.1002/jssc.200500053.
    1. Di D.L., Taverna D., Mazzotti F., Benabdelkamel H., Attya M., Napoli A., Sindona G. Comprehensive assay of flavanones in citrus juices and beverages by uhplc-esi-ms/ms and derivatization chemistry. Food Chem. 2013;141:2328–2333.
    1. Ma C., Gao W., Gao Y., Man S., Huang L., Liu C. Identification of chemical constituents in extracts and rat plasma from fructus aurantii by uplc-pda-q-tof/ms. Phytochem. Anal. 2015;22:112–118. doi: 10.1002/pca.1252.
    1. Zhou D.Y., Chen D.L., Xu Q., Xue X.Y., Zhang F.F., Liang X.M. Characterization of polymethoxylated flavones in fructus aurantii by liquid chromatography with atmospheric pressure chemical ionization combined with tandem mass spectrometry. J. Pharm. Biomed. 2007;43:1692–1699. doi: 10.1016/j.jpba.2006.12.032.
    1. Russo M., Cacciola F., Bonaccorsi I., Dugo P., Mondello L. Determination of flavanones in citrus juices by means of one- and two-dimensional liquid chromatography. J. Sep. Sci. 2015;34:681–687. doi: 10.1002/jssc.201000844.
    1. Rocco A., Fanali C., Dugo L., Mondello L. A nano-lc/uv method for the analysis of principal phenolic compounds in commercial citrus juices and evaluation of antioxidant potential. Electrophoresis. 2014;35:1701–1708. doi: 10.1002/elps.201300621.
    1. Wojtanowski K.K., Mroczek T. Study of a complex secondary metabolites with potent anti-radical activity by two dimensional tlc/hplc coupled to electrospray ionization time-of-flight mass spectrometry and bioautography. Anal. Chim. Acta. 2018;1029:104–115. doi: 10.1016/j.aca.2018.03.066.
    1. Hernández M., Ventura J., Castro C., Boone V., Rojas R., Ascacio-Valdés J., Martínez-Ávila G. Uplc-esi-qtof-ms²-based identification and antioxidant activity assessment of phenolic compounds from red corn cob (Zea mays L.) Molecules. 2018;23:1425. doi: 10.3390/molecules23061425.
    1. Cudalbeanu M., Ghinea I., Furdui B., Dah-Nouvlessounon D., Raclea R., Costache T., Cucolea I., Urlan F., Dinica R. Exploring new antioxidant and mineral compounds from wild-grown in danube delta biosphere. Molecules. 2018;23:1247. doi: 10.3390/molecules23061247.
    1. Chebrolu K.K., Jifon J., Patil B.S. Modulation of flavanone and furocoumarin levels in grapefruits (citrus paradisi macfad.) by production and storage conditions. Food Chem. 2016;196:374–380. doi: 10.1016/j.foodchem.2015.09.028.
    1. Ramful D., Bahorun T., Bourdon E., Tarnus E., Aruoma O.I. Bioactive phenolics and antioxidant propensity of flavedo extracts of mauritian citrus fruits: Potential prophylactic ingredients for functional foods application. Toxicology. 2010;278:75–87. doi: 10.1016/j.tox.2010.01.012.
    1. Huang Q., Bai F., Nie J., Lu S., Lu C., Zhu X., Zhuo L., Lin X. Didymin ameliorates hepatic injury through inhibition of mapk and nf-κb pathways by up-regulating rkip expression. Int. Immunopharm. 2017;42:130–138.
    1. Cassani J., Araujo A., Martínez-Vázquez M., Manjarrez N., Moreno J., Estrada-Reyes R. Anxiolytic-like and antinociceptive effects of 2(s)-neoponcirin in mice. Molecules. 2013;18:7584–7599. doi: 10.3390/molecules18077584.
    1. Morelli S., Piscioneri A., Salerno S., Al-Fageeh M.B., Drioli E., De Bartolo L. Neuroprotective effect of didymin on hydrogen peroxide-induced injury in the neuronal membrane system. Cells Tissues Organs. 2014;199:184–200. doi: 10.1159/000365072.
    1. Leyva-Lopez N., Gutierrez-Grijalva E.P., Ambriz-Perez D.L., Heredia J.B. Flavonoids as cytokine modulators: A possible therapy for inflammation-related diseases. Int. J. Mol. Sci. 2016;17:921. doi: 10.3390/ijms17060921.
    1. Chahar M.K., Sharma N., Dobhal M.P., Joshi Y.C. Flavonoids: A versatile source of anticancer drugs. Pharmacogn. Rev. 2011;5:1–12.
    1. Xu Y., Xin Y., Diao Y., Lu C., Fu J., Luo L., Yin Z. Synergistic effects of apigenin and paclitaxel on apoptosis of cancer cells. PLoS ONE. 2011;6:e29169. doi: 10.1371/journal.pone.0029169.
    1. Chakrabarti M., Ray S.K. Synergistic anti-tumor actions of luteolin and silibinin prevented cell migration and invasion and induced apoptosis in glioblastoma snb19 cells and glioblastoma stem cells. Brain Res. 2015;1629:85–93. doi: 10.1016/j.brainres.2015.10.010.
    1. Hendriks L., Besse B. New windows open for immunotherapy in lung cancer. Nature. 2018;558:376–377. doi: 10.1038/d41586-018-05312-9.
    1. Schiller J.H. A new standard of care for advanced lung cancer. N. Engl. J. Med. 2018;378:2135–2137. doi: 10.1056/NEJMe1804364.
    1. Lim S.B., Tan S.J., Lim W.T., Lim C.T. An extracellular matrix-related prognostic and predictive indicator for early-stage non-small cell lung cancer. Nat. Commun. 2017;8:1734. doi: 10.1038/s41467-017-01430-6.
    1. Androutsopoulos V.P., Spandidos D.A. The flavonoids diosmetin and luteolin exert synergistic cytostatic effects in human hepatoma hepg2 cells via cyp1a-catalyzed metabolism, activation of jnk and erk and p53/p21 up-regulation. J. Nutr. Biochem. 2013;24:496–504. doi: 10.1016/j.jnutbio.2012.01.012.
    1. Tsui K.-C., Chiang T.-H., Wang J.-S., Lin L.-J., Chao W.-C., Chen B.-H., Lu J.-F. Flavonoids from gynostemma pentaphyllum exhibit differential induction of cell cycle arrest in h460 and a549 cancer cells. Molecules. 2014;19:17663–17681. doi: 10.3390/molecules191117663.
    1. Nagata S., Golstein P. The fas death factor. Science. 1995;267:1449–1456. doi: 10.1126/science.7533326.
    1. Teshiba R., Kawano S., Wang L.L., He L., Naranjo A., London W.B., Seeger R.C., Gastier-Foster J.M., Look A.T., Hogarty M.D., et al. Age-dependent prognostic effect by mitosis-karyorrhexis index in neuroblastoma: A report from the children’s oncology group. Pediatr. Dev. Pathol. 2014;17:441–449. doi: 10.2350/14-06-1505-OA.1.
    1. Sun Y., Bell J.L., Carter D., Gherardi S., Poulos R.C., Milazzo G., Wong J.W., Al-Awar R., Tee A.E., Liu P.Y., et al. Wdr5 supports an n-myc transcriptional complex that drives a protumorigenic gene expression signature in neuroblastoma. Cancer Res. 2015;75:5143–5154. doi: 10.1158/0008-5472.CAN-15-0423.
    1. Varan A., Kesik V., Senocak M.E., Kale G., Akyuz C., Buyukpamukcu M. The efficacy of delayed surgery in children with high-risk neuroblastoma. J. Cancer Res. Ther. 2015;11:268–271.
    1. Singhal J., Nagaprashantha L.D., Vatsyayan R., Awasthi S., Singhal S.S. Didymin induces apoptosis by inhibiting n-myc and upregulating rkip in neuroblastoma. Cancer Prev. Res. (Phila.) 2012;5:473–483. doi: 10.1158/1940-6207.CAPR-11-0318.
    1. Nieto Montesinos R., Béduneau A., Pellequer Y., Lamprecht A. Delivery of p-glycoprotein substrates using chemosensitizers and nanotechnology for selective and efficient therapeutic outcomes. J. Control. Release. 2012;161:50–61. doi: 10.1016/j.jconrel.2012.04.034.
    1. Al-Mulla F. Novel flavonoid didymin inhibits neuroblastomas—Letter. Cancer Prev. Res. (Phila.) 2012;5 doi: 10.1158/1940-6207.CAPR-12-0009.
    1. Vera-Ramirez L., Vodnala S.K., Nini R. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat. Commun. 2018;9:1944. doi: 10.1038/s41467-018-04070-6.
    1. Siegel R.L., Miller K.D., Jemal A. Colorectal cancer mortality rates in adults aged 20 to 54 years in the united states, 1970–2014. JAMA. 2017;318:572–574. doi: 10.1001/jama.2017.7630.
    1. Ma S., Zhou J., Zhang Y., He Y., Jiang Q., Yue D., Xu X., Gu Z. Highly stable fluorinated nanocarriers with irgd for overcoming the stability dilemma and enhancing tumor penetration in an orthotopic breast cancer. ACS Appl. Mater. Interfaces. 2016;8:28468–28479. doi: 10.1021/acsami.6b09633.
    1. Hsu Y.L., Hsieh C.J., Tsai E.M., Hung J.Y., Chang W.A., Hou M.F., Kuo P.L. Didymin reverses phthalate ester-associated breast cancer aggravation in the breast cancer tumor microenvironment. Oncol. Lett. 2016;11:1035–1042. doi: 10.3892/ol.2015.4008.
    1. Vernekar A.A., Sinha D., Srivastava S., Paramasivam P.U., D’Silva P., Mugesh G. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat. Commun. 2014;5:5301. doi: 10.1038/ncomms6301.
    1. Ullah H., Khan H. Anti-parkinson potential of silymarin: Mechanistic insight and therapeutic standing. Front. Pharmacol. 2018;9:422. doi: 10.3389/fphar.2018.00422.
    1. Paul B.D., Sbodio J.I., Xu R., Vandiver M.S., Cha J.Y., Snowman A.M., Snyder S.H. Cystathionine gamma-lyase deficiency mediates neurodegeneration in huntington’s disease. Nature. 2014;509:96–100. doi: 10.1038/nature13136.
    1. Bakshi R., Xu Y., Mueller K.A., Chen X., Granucci E., Paganoni S., Sadri-Vakili G., Schwarzschild M.A. Urate mitigates oxidative stress and motor neuron toxicity of astrocytes derived from als-linked sod1(g93a) mutant mice. Mol. Cell. Neurosci. 2018;92:12–16. doi: 10.1016/j.mcn.2018.06.002.
    1. Kim S.Y., Jeong J.M., Kim S.J., Seo W., Kim M.H., Choi W.M., Yoo W., Lee J.H., Shim Y.R., Yi H.S., et al. Pro-inflammatory hepatic macrophages generate ros through nadph oxidase 2 via endocytosis of monomeric tlr4-md2 complex. Nat. Commun. 2017;8:2247. doi: 10.1038/s41467-017-02325-2.
    1. Shi S.Y., Lu S.Y., Sivasubramaniyam T., Revelo X.S., Cai E.P., Luk C.T., Schroer S.A., Patel P., Kim R.H., Bombardier E., et al. Dj-1 links muscle ros production with metabolic reprogramming and systemic energy homeostasis in mice. Nat. Commun. 2015;6:7415. doi: 10.1038/ncomms8415.
    1. Wilson A.J., Gill E.K., Abudalo R.A., Edgar K.S., Watson C.J., Grieve D.J. Reactive oxygen species signalling in the diabetic heart: Emerging prospect for therapeutic targeting. Heart (Br. Card. Soc.) 2018;104:293–299. doi: 10.1136/heartjnl-2017-311448.
    1. Lee H.J., Yoon Y.S., Lee S.J. Mechanism of neuroprotection by trehalose: Controversy surrounding autophagy induction. Cell Death Dis. 2018;9:712. doi: 10.1038/s41419-018-0749-9.
    1. Estrada-Reyes R., Martínez-Vázquez M., Gallegos-Solís A., Heinze G., Moreno J. Depressant effects of clinopodium mexicanum benth. Govaerts (lamiaceae) on the central nervous system. J. Ethnopharmacol. 2010;130:1–8. doi: 10.1016/j.jep.2010.03.012.
    1. Kim O.K., Jun W., Lee J. Mechanism of er stress and inflammation for hepatic insulin resistance in obesity. Ann. Nutr. Metab. 2015;67:218–227. doi: 10.1159/000440905.
    1. Wang Y., Liu Y., Kirpich I., Ma Z., Wang C., Zhang M., Suttles J., McClain C., Feng W. Lactobacillus rhamnosus gg reduces hepatic tnfalpha production and inflammation in chronic alcohol-induced liver injury. J. Nutr. Biochem. 2013;24:1609–1615. doi: 10.1016/j.jnutbio.2013.02.001.
    1. Eslam M., McLeod D., Kelaeng K.S., Mangia A., Berg T., Thabet K., Irving W.L., Dore G.J., Sheridan D., Grønbæk H., et al. IFN-λ3, not IFN-λ4, likely mediates IFNL3–IFNL4 haplotype–dependent hepatic inflammation and fibrosis. Nat. Genet. 2017;49:795–800. doi: 10.1038/ng.3836.
    1. Acar B., Ozeke O. Association of prediabetes with higher coronary atherosclerotic burden among patients with first diagnosed acute coronary syndrome. Angiology. 2018 doi: 10.1177/0003319718772420.
    1. Castellano I., Di Tomo P., Di Pietro N., Mandatori D., Pipino C. Anti-inflammatory activity of marine ovothiol a in an in vitro model of endothelial dysfunction induced by hyperglycemia. Oxid. Med. Cell. Longev. 2018;2018:2087373. doi: 10.1155/2018/2087373.
    1. Ghosh S., Banerjee S., Sil P.C. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update. Food Chem. Toxicol. 2015;83:111–124. doi: 10.1016/j.fct.2015.05.022.
    1. Kirtikar S., Himangshu S., Ashish S., Kota V.R. Didymin prevents hyperglycemia-induced human umbilical endothelial cells dysfunction and death. Biochem. Pharmacol. 2018;152:1–10.
    1. Brodowska K.M. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Cent. Eur. J. Biol. 2017;7:108–123.
    1. Sanchez-Cano C., Romero-Canelón I., Geraki K., Sadler P.J. Microfocus x-ray fluorescence mapping of tumour penetration by an organo-osmium anticancer complex. J. Inorg. Biochem. 2018;185:26–29. doi: 10.1016/j.jinorgbio.2018.04.014.
    1. Kay C.D., Pereira-Caro G., Ludwig I.A., Clifford M.N., Crozier A. Anthocyanins and flavanones are more bioavailable than previously perceived: A review of recent evidence. Annu. Rev. Food Sci. Technol. 2017;8:155–180. doi: 10.1146/annurev-food-030216-025636.
    1. Xie L., Zhang L., Wang C., Wang X., Xu Y., Yu H., Wu P., Li S., Han L., Gunatilaka A., et al. Methylglucosylation of aromatic amino and phenolic moieties of drug-like biosynthons by combinatorial biosynthesis. Proc. Natl. Acad. Sci. USA. 2018;115:E4980–E4989. doi: 10.1073/pnas.1716046115.
    1. Yao Q., Tao X., Tian B., Tang Y., Shao Y., Kou L., Gou J., Li X., Yin T., Tang X. Improved oral bioavailability of core–shell structured beads by redispersion of the shell-forming nanoparticles: Preparation, characterization and in vivo studies. Colloid Surf. B. 2014;113:92–100. doi: 10.1016/j.colsurfb.2013.08.037.
    1. Scholz P., Keck C.M. Flavonoid nanocrystals produced by artcrystal®-technology. Int. J. Pharm. 2015;482:27–37. doi: 10.1016/j.ijpharm.2014.11.008.
    1. Fatma S., Talegaonkar S., Iqbal Z., Panda A.K., Negi L.M., Goswami D.G., Tariq M. Novel flavonoid-based biodegradable nanoparticles for effective oral delivery of etoposide by p-glycoprotein modulation: An in vitro, ex vivo and in vivo investigations. Drug Deliv. 2016;23:500–511. doi: 10.3109/10717544.2014.923956.
    1. Wang P.P., Qin X.S., Yang Q.Y., Luo Z.G., Xiao Z.G., Peng X.C. Comparative structural characterization of spiral dextrin inclusion complexes with vitamin e or soy isoflavone. J. Agric. Food Chem. 2017;65:8744–8753. doi: 10.1021/acs.jafc.7b03242.
    1. Hernández-Aquino E., Muriel P. Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World J. Gastroenterol. 2018;24:1679–1707. doi: 10.3748/wjg.v24.i16.1679.

Source: PubMed

3
订阅