Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity

Lina Zhao, Zhuo Fu, Jing Wu, Kevin W Aylor, Eugene J Barrett, Wenhong Cao, Zhenqi Liu, Lina Zhao, Zhuo Fu, Jing Wu, Kevin W Aylor, Eugene J Barrett, Wenhong Cao, Zhenqi Liu

Abstract

Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications.

Keywords: endothelial dysfunction; high-fat diet; inflammation; insulin resistance; muscle microvasculature; obesity.

© 2015 Authors; published by Portland Press Limited.

Figures

Figure 1. Effects of HFD ± sodium…
Figure 1. Effects of HFD ± sodium salicylate on insulin and NF-κB signalling in aorta
(A and B) Akt phosphorylation, (C and D) ERK1/2 phosphorylation, (E and F) eNOS phosphorylation, (G and H) IκBα phosphorylation and (I) NF-κB DNA-binding activity. (A, C, E and G) Representative Western blots; (B, D, F and H) quantitative measurements. Compared with respective control without insulin, *P<0.05. n=3–4.
Figure 2. Effects of HFD ± sodium…
Figure 2. Effects of HFD ± sodium salicylate on resistance arterial endothelial function and insulin responses
Vasodilatory responses to Ach (AD) and insulin (EH) were determined using distal saphenous arteries that were dissected from rats fed on either chow or an HFD for 3 days (A), 1 week (B), 2 weeks (C) and 4 weeks (D). Compared with chow, *P<0.05. Compared with HFD, #P<0.05. n=5–6.
Figure 3. Time course effect of HFD…
Figure 3. Time course effect of HFD ± sodium salicylate on insulin-mediated changes in muscle MBV
Each rat received a 2-h euglycaemic–hyperinsulinaemic clamp after an HFD for 3 days (A), 1 week (B), 2 weeks (C) and 4 weeks (D) with or without simultaneous sodium salicylate treatment. MBV was measured using CEU at baseline and 30, 60 and 120 min after the initiation of insulin infusion. Rats fed normal chow were used as a control. Compared with respective baseline (0 min), *P<0.05. n=5–6.
Figure 4. Time course effect of HFD…
Figure 4. Time course effect of HFD ± sodium salicylate on insulin-mediated changes in muscle MBF
Each rat received a 2-h euglycaemic–hyperinsulinaemic clamp after an HFD for 3 days (A), 1 week (B), 2 weeks (C) and 4 weeks (D) with or without simultaneous salicylate treatment. MBF was calculated at baseline and 30, 60 and 120 min after the initiation of insulin infusion. Rats fed normal chow were used as a control. Compared with respective baseline (0 min), *P<0.05. Compared with HFD at the same time point, #P<0.05. n=5–6.
Figure 5. Effects of HFD ± sodium…
Figure 5. Effects of HFD ± sodium salicylate on plasma NO contents
Compared with respective control without insulin, *P<0.05. n=5–6.
Figure 6. Time course effect of HFD…
Figure 6. Time course effect of HFD ± sodium salicylate on metabolic insulin sensitivity
Each rat received a 2-h euglycaemic–hyperinsulinaemic clamp after an HFD for 3 days (A), 1 week (B), 2 weeks (C) and 4 weeks (D) with or without simultaneous sodium salicylate treatment and the glucose infusion rates (GIR) were recorded. Compared with baseline, *P<0.05. Compared with HFD, #P<0.05. n=5–6.
Figure 7. Effects of HFD ± sodium…
Figure 7. Effects of HFD ± sodium salicylate on skeletal muscle insulin signalling
(A) Akt phosphorylation; (B) ERK1/2 phosphorylation. Compared with respective control without insulin, *P<0.05. n = 3.

References

    1. Caballero B. The global epidemic of obesity: an overview. Epidemiol. Rev. 2007;29:1–5. doi: 10.1093/epirev/mxm012.
    1. Stein C.J., Colditz G.A. The epidemic of obesity. J. Clin. Endocrinol. Metab. 2004;89:2522–2525. doi: 10.1210/jc.2004-0288.
    1. Dandona P., Aljada A., Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004;25:4–7. doi: 10.1016/j.it.2003.10.013.
    1. Shoelson S.E., Herrero L., Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007;132:2169–2180. doi: 10.1053/j.gastro.2007.03.059.
    1. Kim F., Pham M., Maloney E., Rizzo N.O., Morton G.J., Wisse B.E., Kirk E.A., Chait A., Schwartz M.W. Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler. Thromb. Vasc. Biol. 2008;28:1982–1988. doi: 10.1161/ATVBAHA.108.169722.
    1. Caballero A.E., Bousquet-Santos K., Robles-Osorio L., Montagnani V., Soodini G., Porramatikul S., Hamdy O., Nobrega A.C., Horton E.S. Overweight Latino children and adolescents have marked endothelial dysfunction and subclinical vascular inflammation in association with excess body fat and insulin resistance. Diabetes Care. 2008;31:576–582. doi: 10.2337/dc07-1540.
    1. Caballero A.E. Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obes. Res. 2003;11:1278–1289. doi: 10.1038/oby.2003.174.
    1. Jonk A.M., Houben A.J., de Jongh R.T., Serne E.H., Schaper N.C., Stehouwer C.D. Microvascular dysfunction in obesity: a potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Physiology. 2007;22:252–260. doi: 10.1152/physiol.00012.2007.
    1. Muris D.M., Houben A.J., Schram M.T., Stehouwer C.D. Microvascular dysfunction: an emerging pathway in the pathogenesis of obesity-related insulin resistance. Rev. Endocr. Metab. Disord. 2013;14:29–38. doi: 10.1007/s11154-012-9231-7.
    1. van Sloten T.T., Henry R.M., Dekker J.M., Nijpels G., Unger T., Schram M.T., Stehouwer C.D. Endothelial dysfunction plays a key role in increasing cardiovascular risk in type 2 diabetes: the Hoorn study. Hypertension. 2014;64:1299–1305. doi: 10.1161/HYPERTENSIONAHA.114.04221.
    1. Steinberger J., Daniels S.R. Obesity, insulin resistance, diabetes, and cardiovascular risk in children: an American Heart Association scientific statement from the Atherosclerosis, Hypertension, and Obesity in the Young Committee (Council on Cardiovascular Disease in the Young) and the Diabetes Committee (Council on Nutrition, Physical Activity, and Metabolism) Circulation. 2003;107:1448–1453. doi: 10.1161/01.CIR.0000060923.07573.F2.
    1. Vincent M.A., Clerk L.H., Lindner J.R., Klibanov A.L., Clark M.G., Rattigan S., Barrett E.J. Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes. 2004;53:1418–1423. doi: 10.2337/diabetes.53.6.1418.
    1. Chai W., Wang W., Dong Z., Cao W., Liu Z. Angiotensin II receptors modulate muscle microvascular and metabolic responses to insulin in vivo. Diabetes. 2011;60:2939–2946. doi: 10.2337/db10-1691.
    1. Chai W., Zhang X., Barrett E.J., Liu Z. Glucagon-like peptide 1 recruits muscle microvasculature and improves insulin's metabolic action in the presence of insulin resistance. Diabetes. 2014;63:2788–2799. doi: 10.2337/db13-1597.
    1. Zhao L., Chai W., Fu Z., Dong Z., Aylor K.W., Barrett E.J., Cao W., Liu Z. Globular adiponectin enhances muscle insulin action via microvascular recruitment and increased insulin delivery. Circ. Res. 2013;112:1263–1271. doi: 10.1161/CIRCRESAHA.111.300388.
    1. Fu Z., Zhao L., Chai W., Dong Z., Cao W., Liu Z. Ranolazine recruits muscle microvasculature and enhances insulin action in rats. J. Physiol. 2013;591:5235–5249. doi: 10.1113/jphysiol.2013.257246.
    1. Fu Z., Zhao L., Aylor K.W., Carey R.M., Barrett E.J., Liu Z. Angiotensin-(1–7) recruits muscle microvasculature and enhances insulin's metabolic action via mas receptor. Hypertension. 2014;63:1219–1227. doi: 10.1161/HYPERTENSIONAHA.113.03025.
    1. Zhang L., Vincent M.A., Richards S.M., Clerk L.H., Rattigan S., Clark M.G., Barrett E.J. Insulin sensitivity of muscle capillary recruitment in vivo. Diabetes. 2004;53:447–453. doi: 10.2337/diabetes.53.2.447.
    1. Meijer R.I., De Boer M.P., Groen M.R., Eringa E.C., Rattigan S., Barrett E.J., Smulders Y.M., Serne E.H. Insulin-induced microvascular recruitment in skin and muscle are related and both are associated with whole-body glucose uptake. Microcirculation. 2012;19:494–500. doi: 10.1111/j.1549-8719.2012.00174.x.
    1. Liu Z., Liu J., Jahn L.A., Fowler D.E., Barrett E.J. Infusing lipid raises plasma free fatty acids and induces insulin resistance in muscle microvasculature. J. Clin. Endocrinol. Metab. 2009;94:3543–3549. doi: 10.1210/jc.2009-0027.
    1. Liu J., Jahn L.A., Fowler D.E., Barrett E.J., Cao W., Liu Z. Free fatty acids induce insulin resistance in both cardiac and skeletal muscle microvasculature in humans. J. Clin. Endocrinol. Metab. 2011;96:438–446. doi: 10.1210/jc.2010-1174.
    1. Clerk L.H., Vincent M.A., Jahn L.A., Liu Z., Lindner J.R., Barrett E.J. Obesity blunts insulin-mediated microvascular recruitment in human forearm muscle. Diabetes. 2006;55:1436–1442. doi: 10.2337/db05-1373.
    1. Eggleston E.M., Jahn L.A., Barrett E.J. Early microvascular recruitment modulates subsequent insulin-mediated skeletal muscle glucose metabolism during lipid infusion. Diabetes Care. 2013;36:104–110. doi: 10.2337/dc11-2399.
    1. Wallis M.G., Wheatley C.M., Rattigan S., Barrett E.J., Clark A.D., Clark M.G. Insulin-mediated hemodynamic changes are impaired in muscle of Zucker obese rats. Diabetes. 2002;51:3492–3498. doi: 10.2337/diabetes.51.12.3492.
    1. Vincent M.A., Barrett E.J., Lindner J.R., Clark M.G., Rattigan S. Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin. Am. J. Physiol. Endocrinol. Metab. 2003;285:E123–E129. doi: 10.1152/ajpendo.00021.2003.
    1. Clerk L.H., Rattigan S., Clark M.G. Lipid infusion impairs physiologic insulin-mediated capillary recruitment and muscle glucose uptake in vivo. Diabetes. 2002;51:1138–1145. doi: 10.2337/diabetes.51.4.1138.
    1. Youd J.M., Rattigan S., Clark M.G. Acute impairment of insulin-mediated capillary recruitment and glucose uptake in rat skeletal muscle in vivo by TNF-alpha. Diabetes. 2000;49:1904–1909. doi: 10.2337/diabetes.49.11.1904.
    1. Arkan M.C., Hevener A.L., Greten F.R., Maeda S., Li Z.W., Long J.M., Wynshaw-Boris A., Poli G., Olefsky J., Karin M. IKK-beta links inflammation to obesity-induced insulin resistance. Nat. Med. 2005;11:191–198. doi: 10.1038/nm1185.
    1. Shoelson S.E., Lee J., Goldfine A.B. Inflammation and insulin resistance. J. Clin. Invest. 2006;116:1793–1801. doi: 10.1172/JCI29069.
    1. Yin M.J., Yamamoto Y., Gaynor R.B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature. 1998;396:77–80. doi: 10.1038/23948.
    1. Yuan M., Konstantopoulos N., Lee J., Hansen L., Li Z.W., Karin M., Shoelson S.E. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science. 2001;293:1673–1677. doi: 10.1126/science.1061620.
    1. Goldfine A.B., Silver R., Aldhahi W., Cai D., Tatro E., Lee J., Shoelson S.E. Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes. Clin. Transl. Sci. 2008;1:36–43. doi: 10.1111/j.1752-8062.2008.00026.x.
    1. Goldfine A.B., Conlin P.R., Halperin F., Koska J., Permana P., Schwenke D., Shoelson S.E., Reaven P.D. A randomised trial of salsalate for insulin resistance and cardiovascular risk factors in persons with abnormal glucose tolerance. Diabetologia. 2013;56:714–723. doi: 10.1007/s00125-012-2819-3.
    1. Chai W., Liu J., Jahn L.A., Fowler D.E., Barrett E.J., Liu Z. Salsalate attenuates free fatty acid-induced microvascular and metabolic insulin resistance in humans. Diabetes Care. 2011;34:1634–1638. doi: 10.2337/dc10-2345.
    1. Dong Z., Chai W., Wang W., Zhao L., Fu Z., Cao W., Liu Z. Protein kinase A mediates glucagon-like peptide 1-induced nitric oxide production and muscle microvascular recruitment. Am. J. Physiol. Endocrinol. Metab. 2013;304:E222–E228. doi: 10.1152/ajpendo.00473.2012.
    1. Zhang W.J., Wei H., Hagen T., Frei B. Alpha-lipoic acid attenuates LPS-induced inflammatory responses by activating the phosphoinositide 3-kinase/Akt signaling pathway. Proc. Natl. Acad. Sci. U.S.A. 2007;104:4077–4082. doi: 10.1073/pnas.0700305104.
    1. Chai W., Wu Y., Li G., Cao W., Yang Z., Liu Z. Activation of p38 mitogen-activated protein kinase abolishes insulin-mediated myocardial protection against ischemia-reperfusion injury. Am. J. Physiol. Endocrinol. Metab. 2008;294:E183–E189. doi: 10.1152/ajpendo.00571.2007.
    1. Wang N., Chai W., Zhao L., Tao L., Cao W., Liu Z. Losartan increases muscle insulin delivery and rescues insulin's metabolic action during lipid infusion via microvascular recruitment. Am. J. Physiol. Endocrinol. Metab. 2013;304:E538–E545. doi: 10.1152/ajpendo.00537.2012.
    1. Inyard A.C., Clerk L.H., Vincent M.A., Barrett E.J. Contraction stimulates nitric oxide independent microvascular recruitment and increases muscle insulin uptake. Diabetes. 2007;56:2194–2200. doi: 10.2337/db07-0020.
    1. Park S.Y., Cho Y.R., Kim H.J., Higashimori T., Danton C., Lee M.K., Dey A., Rothermel B., Kim Y.B., Kalinowski A., et al. Unraveling the temporal pattern of diet-induced insulin resistance in individual organs and cardiac dysfunction in C57BL/6 mice. Diabetes. 2005;54:3530–3540. doi: 10.2337/diabetes.54.12.3530.
    1. Turner N., Kowalski G.M., Leslie S.J., Risis S., Yang C., Lee-Young R.S., Babb J.R., Meikle P.J., Lancaster G.I., Henstridge D.C., et al. Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia. 2013;56:1638–1648. doi: 10.1007/s00125-013-2913-1.
    1. Solinas G., Karin M. JNK1 and IKKβ: molecular links between obesity and metabolic dysfunction. FASEB J. 2010;24:2596–2611. doi: 10.1096/fj.09-151340.
    1. Carvalho-Filho M.A., Ropelle E.R., Pauli R.J., Cintra D.E., Tsukumo D.M., Silveira L.R., Curi R., Carvalheira J.B., Velloso L.A., Saad M.J. Aspirin attenuates insulin resistance in muscle of diet-induced obese rats by inhibiting inducible nitric oxide synthase production and S-nitrosylation of IRbeta/IRS-1 and Akt. Diabetologia. 2009;52:2425–2434. doi: 10.1007/s00125-009-1498-1.
    1. Fleischman A., Shoelson S.E., Bernier R., Goldfine A.B. Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care. 2008;31:289–294. doi: 10.2337/dc07-1338.
    1. Koska J., Ortega E., Bunt J.C., Gasser A., Impson J., Hanson R.L., Forbes J., de Courten B., Krakoff J. The effect of salsalate on insulin action and glucose tolerance in obese non-diabetic patients: results of a randomised double-blind placebo-controlled study. Diabetologia. 2009;52:385–393. doi: 10.1007/s00125-008-1239-x.
    1. Goldfine A.B., Fonseca V., Jablonski K.A., Pyle L., Staten M.A., Shoelson S.E. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann. Intern. Med. 2010;152:346–357. doi: 10.7326/0003-4819-152-6-201003160-00004.
    1. Kim Y.B., Nikoulina S.E., Ciaraldi T.P., Henry R.R., Kahn B.B. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. J. Clin. Invest. 1999;104:733–741. doi: 10.1172/JCI6928.

Source: PubMed

3
订阅