Pentoxifylline and the proteasome inhibitor MG132 induce apoptosis in human leukemia U937 cells through a decrease in the expression of Bcl-2 and Bcl-XL and phosphorylation of p65

Alejandro Bravo-Cuellar, Georgina Hernández-Flores, José Manuel Lerma-Díaz, Jorge Ramiro Domínguez-Rodríguez, Luis F Jave-Suárez, Ruth De Célis-Carrillo, Adriana Aguilar-Lemarroy, Paulina Gómez-Lomeli, Pablo Cesar Ortiz-Lazareno, Alejandro Bravo-Cuellar, Georgina Hernández-Flores, José Manuel Lerma-Díaz, Jorge Ramiro Domínguez-Rodríguez, Luis F Jave-Suárez, Ruth De Célis-Carrillo, Adriana Aguilar-Lemarroy, Paulina Gómez-Lomeli, Pablo Cesar Ortiz-Lazareno

Abstract

Background: In Oncology, the resistance of the cancerous cells to chemotherapy continues to be the principal limitation. The nuclear factor-kappa B (NF-κB) transcription factor plays an important role in tumor escape and resistance to chemotherapy and this factor regulates several pathways that promote tumor survival including some antiapoptotic proteins such as Bcl-2 and Bcl-XL. In this study, we investigated, in U937 human leukemia cells, the effects of PTX and the MG132 proteasome inhibitor, drugs that can disrupt the NF-κB pathway. For this, we evaluated viability, apoptosis, cell cycle, caspases-3, -8, -9, cytochrome c release, mitochondrial membrane potential loss, p65 phosphorylation, and the modification in the expression of pro- and antiapoptotic genes, and the Bcl-2 and Bcl-XL antiapoptotic proteins.

Results: The two drugs affect the viability of the leukemia cells in a time-dependent manner. The greatest percentage of apoptosis was obtained with a combination of the drugs; likewise, PTX and MG132 induce G1 phase cell cycle arrest and cleavage of caspases -3,-8, -9 and cytochrome c release and mitochondrial membrane potential loss in U937 human leukemia cells. In these cells, PTX and the MG132 proteasome inhibitor decrease p65 (NF-κB subunit) phosphorylation and the antiapoptotic proteins Bcl-2 and Bcl-XL. We also observed, with a combination of these drugs overexpression of a group of the proapoptotic genes BAX, DIABLO, and FAS while the genes BCL-XL, MCL-1, survivin, IκB, and P65 were downregulated.

Conclusions: The two drugs used induce apoptosis per se, this cytotoxicity was greater with combination of both drugs. These observations are related with the caspases -9, -3 cleavage and G1 phase cell cycle arrest, and a decrease in p65 phosphorylation and Bcl-2 and Bcl-XL proteins. As well as this combination of drugs promotes the upregulation of the proapoptotic genes and downregulation of antiapoptotic genes. These observations strongly confirm antileukemic potential.

Figures

Figure 1
Figure 1
Evaluation of viability in U937 human leukemia cells treated with PTX, MG132 and PTX + MG132. U937 cells were incubated in the presence of PTX, MG132, or PTX + MG132 for 18, 24, 36, and 48 hours as previously indicated. After incubation, WST-1 was added and 3 hours later, viability was assessed by spectrophotometry at 450 nm. The results represent mean ± standard deviation of three independent experiments performed in triplicate. Statistical analysis Mann-Whitney U test. ♦ p <0.05 PTX or PTX + MG132 vs untreated control group or MG132 group. ● p <0.05 PTX + MG132 vs all groups. * p < 0.05 PTX, MG132 or PTX + MG132 vs untreated control group.
Figure 2
Figure 2
PTX and MG132 modulate the cell cycle in U937 cells. U937 cells were incubated alone or were treated with 8 mM PTX, 1 μM MG132, or PTX + MG132 for 24 hours as previously indicated. After incubation the cell cycle was analyzed by flow cytometry. The results represent mean ± standard deviation of three independent experiments performed in triplicate. Statistical analysis Mann-Whitney U test * p <0.05 PTX, MG132 or PTX + MG132 vs untreated control group. ● p <0.05 MG132 or PTX + MG132 groups vs PTX or untreated control group.
Figure 3
Figure 3
Induction of apoptosis in U937 cells treated with PTX, MG132 and PTX + MG132. U937 cells were incubated exclusively in RPMI-S culture medium or were treated with PTX, MG132, or PTX + MG132 for 24 hours. After incubation apoptosis was assessed using Annexin V-FITC/PI. The results represent mean ± standard deviation of three independent experiments performed in triplicate. Mann-Whitney U test. *p <0.05 all groups vs untreated control group; ●p <0.05 PTX + MG132 vs all groups.
Figure 4
Figure 4
PTX + MG132 induces loss of the mitochondrial membrane potential (ΔΨm). U937 cells were cultured and treated with 8 mM PTX, 1 μM MG132, or PTX + MG132. After 24 hours, the cells were harvested and the ΔΨm was assessment by flow cytometry using DIOC6 staining. Protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) was used as a positive control. The results represent mean ± standard deviation of three independent experiments performed in triplicate. Statistical analysis Mann-Whitney U test. * p <0.05 all groups vs untreated control group (UCG); ●  p <0.05 PTX + MG132 vs all groups.
Figure 5
Figure 5
Western blot analysis of caspases -3,-8,-9 and cytochrome c in U937 cells treated with PTX, MG132 or PTX + MG132. U937 cells were cultured and treated with 8 mM PTX, 1 μM MG132, or PTX + MG132. After 24 hours, the cells were harvested and lysed. Equivalent amounts of individual lysates were placed on 10% SDS gradient polyacrylamide gels for electrophoresis and then were electrotransferred to Immobilon-P PVDF membranes. A representative study is shown and two additional experiments yielded similar results.
Figure 6
Figure 6
Determination of phosphorylated p65 (NF-κB subunit) in U937 cells treated with PTX, MG132 and PTX + MG132. U937 cells were incubated either alone or treated with 8 mM PTX, 1 μM MG132, or PTX + MG132. After 1 hour, the phosphorylated p65 protein was determined by flow cytometry. For each sample at, least 20,000 events were acquired. The results represent mean ± standard deviation of the Mean Fluorescence Intensity (MFI) of phosphorylated p65 of three independent experiments carried out in triplicate. *p <0.01 vs the untreated control group.
Figure 7
Figure 7
PTX and MG132 reduce the expression of Bcl-2 and Bcl-XL antiapoptotic proteins in U937 cells. U937 human leukemia cells were incubated alone or were treated with 8 mM PTX, 1 μM MG132, or PTX + MG132. After 24 hours the Bcl-2 (A) and Bcl-XL (B)antiapoptotic proteins were determined by flow cytometry. For each sample, at least 20,000 events were acquired. The results represent mean ± standard deviation of the Mean Fluorescence Intensity (MFI) of Bcl-2 or of Bcl-XL of three independent experiments carried out in triplicate. *p <0.01 vs the untreated control group.
Figure 8
Figure 8
Expression of pro- and antiapoptotic genes in U937 cells treated with PTX, MG132 and PTX + MG132. U937 human leukemia cells were incubated alone or treated with 8 mM PTX, 1 μM MG132, or PTX + MG132. After 3 hours gene expression was assessed by quantitative Real-Time PCR. The data are expressed as messenger (mRNA) fold change in relative normalized quantities employing the RPL32 gene expression. In all cases, standard deviation was not >0.08. Arbitrary was considered as significant upregulation or downregulation when the change was ≥ 30% in relation to constitutive gene expression.

References

    1. Wu CP, Qing X, Wu CY, Zhu H, Zhou HY. Immunophenotype and increased presence of CD4(+)CD25(+) regulatory T cells in patients with acute lymphoblastic leukemia. Oncol Lett. 2012;3(2):421–424.
    1. Simon T, Anegon I, Blancou P. Heme oxygenase and carbon monoxide as an immunotherapeutic approach in transplantation and cancer. Immunotherapy. 2011;3(4 Suppl):15–18.
    1. Terracini B. Epidemiology of childhood cancer. Environ Health. 2011;10(Suppl 1):S8.
    1. Snead JL, O’Hare T, Eide CA, Deininger MW. New strategies for the first-line treatment of chronic myeloid leukemia: can resistance be avoided? Clin Lymphoma Myeloma. 2008;8(Suppl 3):S107–S117.
    1. Shaffer BC, Gillet JP, Patel C, Baer MR, Bates SE, Gottesman MM. Drug resistance: still a daunting challenge to the successful treatment of AML. Drug Resist Updat. 2012;15(1–2):62–69.
    1. Martelli AM, Chiarini F, Evangelisti C, Ognibene A, Bressanin D, Billi AM, Manzoli L, Cappellini A, McCubrey JA. Targeting the liver kinase B1/AMP-activated protein kinase pathway as a therapeutic strategy for hematological malignancies. Expert Opin Ther Targets. 2012;16(7):729–742.
    1. Benelli R, Vene R, Ciarlo M, Carlone S, Barbieri O, Ferrari N. The AKT/NF-kappaB inhibitor xanthohumol is a potent anti-lymphocytic leukemia drug overcoming chemoresistance and cell infiltration. Biochem Pharmacol. 2012;83(12):1634–1642.
    1. Bravo-Cuellar A, Ortiz-Lazareno PC, Lerma-Diaz JM, Dominguez-Rodriguez JR, Jave-Suarez LF, Aguilar-Lemarroy A, del Toro-Arreola S, de Celis-Carrillo R, Sahagun-Flores JE, de Alba-Garcia JE. Sensitization of cervix cancer cells to Adriamycin by Pentoxifylline induces an increase in apoptosis and decrease senescence. Mol Cancer. 2010;9:114.
    1. Lerma-Diaz JM, Hernandez-Flores G, Dominguez-Rodriguez JR, Ortiz-Lazareno PC, Gomez-Contreras P, Cervantes-Munguia R, Scott-Algara D, Aguilar-Lemarroy A, Jave-Suarez LF, Bravo-Cuellar A. In vivo and in vitro sensitization of leukemic cells to adriamycin-induced apoptosis by pentoxifylline. Involvement of caspase cascades and IkappaBalpha phosphorylation. Immunol Lett. 2006;103(2):149–158.
    1. Adrain C, Martin SJ. Apoptosis: calling time on apoptosome activity. Sci Signal. 2009;2(91):pe62.
    1. Pop C, Salvesen GS. Human caspases: activation, specificity, and regulation. J Biol Chem. 2009;284(33):21777–21781.
    1. Smith MA, Schnellmann RG. Calpains, mitochondria, and apoptosis. Cardiovasc Res. 2012;96(1):32–37.
    1. Sarmento-Ribeiro AB, Dourado M, Paiva A, Freitas A, Silva T, Regateiro F, Oliveira CR. Apoptosis deregulation influences chemoresistance to azaguanine in human leukemic cell lines. Cancer Invest. 2012;30(5):331–342.
    1. Aoudjit F, Vuori K. Integrin signaling in cancer cell survival and chemoresistance. Chemotherapy research and practice. 2012;2012:283181.
    1. Ahn KS, Sethi G, Aggarwal BB. Reversal of chemoresistance and enhancement of apoptosis by statins through down-regulation of the NF-kappaB pathway. Biochem Pharmacol. 2008;75(4):907–913.
    1. Tracey L, Streck CJ, Du Z, Williams RF, Pfeffer LM, Nathwani AC, Davidoff AM. NF-kappaB activation mediates resistance to IFN beta in MLL-rearranged acute lymphoblastic leukemia. Leukemia. 2010;24(4):806–812.
    1. Choi YH, Park HY. Anti-inflammatory effects of spermidine in lipopolysaccharide-stimulated BV2 microglial cells. J Biomed Sci. 2012;19:31.
    1. Chang CC, Lu WJ, Ong ET, Chiang CW, Lin SC, Huang SY, Sheu JR. A novel role of sesamol in inhibiting NF-kappaB-mediated signaling in platelet activation. J Biomed Sci. 2011;18:93.
    1. Oiso S, Ikeda R, Nakamura K, Takeda Y, Akiyama S, Kariyazono H. Involvement of NF-kappaB activation in the cisplatin resistance of human epidermoid carcinoma KCP-4 cells. Oncol Rep. 2012;28(1):27–32.
    1. Yadav VR, Prasad S, Gupta SC, Sung B, Phatak SS, Zhang S, Aggarwal BB. 3-Formylchromone interacts with cysteine 38 in p65 protein and with cysteine 179 in IkappaBalpha kinase, leading to down-regulation of nuclear factor-kappaB (NF-kappaB)-regulated gene products and sensitization of tumor cells. J Biol Chem. 2012;287(1):245–256.
    1. Deorukhkar A, Krishnan S. Targeting inflammatory pathways for tumor radiosensitization. Biochem Pharmacol. 2010;80(12):1904–1914.
    1. Fakler M, Loeder S, Vogler M, Schneider K, Jeremias I, Debatin KM, Fulda S. Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance. Blood. 2009;113(8):1710–1722.
    1. Hernandez-Flores G, Ortiz-Lazareno PC, Lerma-Diaz JM, Dominguez-Rodriguez JR, Jave-Suarez LF, Aguilar-Lemarroy Adel C, de Celis-Carrillo R, del Toro-Arreola S, Castellanos-Esparza YC, Bravo-Cuellar A. Pentoxifylline sensitizes human cervical tumor cells to cisplatin-induced apoptosis by suppressing NF-kappa B and decreased cell senescence. BMC Cancer. 2011;11:483.
    1. Barancik M, Bohacova V, Gibalova L, Sedlak J, Sulova Z, Breier A. Potentiation of anticancer drugs: effects of pentoxifylline on neoplastic cells. Int J Mol Sci. 2012;13(1):369–382.
    1. Goel PN, Gude RP. Unravelling the antimetastatic potential of pentoxifylline, a methylxanthine derivative in human MDA-MB-231 breast cancer cells. Mol Cell Biochem. 2011;358(1–2):141–151.
    1. Green LA, Kim C, Gupta SK, Rajashekhar G, Rehman J, Clauss M. Pentoxifylline reduces tumor necrosis factor-alpha and HIV-induced vascular endothelial activation. AIDS Res Hum Retroviruses. 2012;28(10):1207–1215.
    1. Ortiz-Lazareno PC, Hernandez-Flores G, Dominguez-Rodriguez JR, Lerma-Diaz JM, Jave-Suarez LF, Aguilar-Lemarroy A, Gomez-Contreras PC, Scott-Algara D, Bravo-Cuellar A. MG132 proteasome inhibitor modulates proinflammatory cytokines production and expression of their receptors in U937 cells: involvement of nuclear factor-kappaB and activator protein-1. Immunology. 2008;124(4):534–541.
    1. Landis-Piwowar KR. Proteasome inhibitors in cancer therapy: a novel approach to a ubiquitous problem. Clin Lab Sci. 2012;25(1):38–44.
    1. Kisselev AF, van der Linden WA, Overkleeft HS. Proteasome inhibitors: an expanding army attacking a unique target. Chem Biol. 2012;19(1):99–115.
    1. Catalgol B. Proteasome and cancer. Prog Mol Biol Transl Sci. 2012;109:277–293.
    1. Park HS, Jun do Y, Han CR, Woo HJ, Kim YH. Proteasome inhibitor MG132-induced apoptosis via ER stress-mediated apoptotic pathway and its potentiation by protein tyrosine kinase p56lck in human Jurkat T cells. Biochem Pharmacol. 2011;82(9):1110–1125.
    1. Neutzner A, Li S, Xu S, Karbowski M. The ubiquitin/proteasome system-dependent control of mitochondrial steps in apoptosis. Semin Cell Dev Biol. 2012;23(5):499–508.
    1. Gomez-Contreras PC, Hernandez-Flores G, Ortiz-Lazareno PC, Del Toro-Arreola S, Delgado-Rizo V, Lerma-Diaz JM, Barba-Barajas M, Dominguez-Rodriguez JR, Bravo Cuellar A. In vitro induction of apoptosis in U937 cells by perillyl alcohol with sensitization by pentoxifylline: increased BCL-2 and BAX protein expression. Chemotherapy. 2006;52(6):308–315.
    1. Hernandez-Flores G, Bravo-Cuellar A, Aguilar-Luna JC, Lerma-Diaz JM, Barba-Barajas M, Orbach-Arbouys S. [In vitro induction of apoptosis in acute myelogenous and lymphoblastic leukemia cells by adriamycine is increased by pentoxifylline] Presse Med. 2010;39(12):1330–1331.
    1. Misra S, Sharma S, Agarwal A, Khedkar SV, Tripathi MK, Mittal MK, Chaudhuri G. Cell cycle-dependent regulation of the bi-directional overlapping promoter of human BRCA2/ZAR2 genes in breast cancer cells. Mol Cancer. 2010;9:50.
    1. Niu XF, Liu BQ, Du ZX, Gao YY, Li C, Li N, Guan Y, Wang HQ. Resveratrol protects leukemic cells against cytotoxicity induced by proteasome inhibitors via induction of FOXO1 and p27Kip1. BMC Cancer. 2011;11:99.
    1. Sung ES, Park KJ, Choi HJ, Kim CH, Kim YS. The proteasome inhibitor MG132 potentiates TRAIL receptor agonist-induced apoptosis by stabilizing tBid and Bik in human head and neck squamous cell carcinoma cells. Exp Cell Res. 2012;318(13):1564–1576.
    1. You BR, Park WH. The enhancement of propyl gallate-induced apoptosis in HeLa cells by a proteasome inhibitor MG132. Oncol Rep. 2011;25(3):871–877.
    1. Pilat MJ, Kamradt JM, Pienta KJ. Hormone resistance in prostate cancer. Cancer Metastasis Rev. 1998;17(4):373–381.
    1. Mantena SK, Sharma SD, Katiyar SK. Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol Cancer Ther. 2006;5(2):296–308.
    1. Wurstle ML, Laussmann MA, Rehm M. The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome. Exp Cell Res. 2012;318(11):1213–1220.
    1. Dai Y, Rahmani M, Grant S. Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK- and NF-kappaB-dependent process. Oncogene. 2003;22(46):7108–7122.
    1. Ji Q, Jia H, Dai H, Li W, Zhang L. Protective effects of pentoxifylline on the brain following remote burn injury. Burns. 2010;36(8):1300–1308.
    1. Juvekar A, Ramaswami S, Manna S, Chang TP, Zubair A, Vancurova I. Electrophoretic mobility shift assay analysis of NFkappaB transcriptional regulation by nuclear IkappaBalpha. Methods Mol Biol. 2012;809:49–62.
    1. Perkins ND. The diverse and complex roles of NF-kappaB subunits in cancer. Nat Rev Cancer. 2012;12(2):121–132.
    1. Sohma I, Fujiwara Y, Sugita Y, Yoshioka A, Shirakawa M, Moon JH, Takiguchi S, Miyata H, Yamasaki M, Mori M. Parthenolide, an NF-kappaB inhibitor, suppresses tumor growth and enhances response to chemotherapy in gastric cancer. CANCER GENOMICS PROTEOMICS. 2011;8(1):39–47.
    1. Wang YW, Wang SJ, Zhou YN, Pan SH, Sun B. Escin augments the efficacy of gemcitabine through down-regulation of nuclear factor-kappaB and nuclear factor-kappaB-regulated gene products in pancreatic cancer both in vitro and in vivo. J Cancer Res Clin Oncol. 2012;138(5):785–797.
    1. Go HS, Seo JE, Kim KC, Han SM, Kim P, Kang YS, Han SH, Shin CY, Ko KH. Valproic acid inhibits neural progenitor cell death by activation of NF-kappaB signaling pathway and up-regulation of Bcl-XL. J Biomed Sci. 2011;18(1):48.
    1. Cao W, Shiverick KT, Namiki K, Sakai Y, Porvasnik S, Urbanek C, Rosser CJ. Docetaxel and bortezomib downregulate Bcl-2 and sensitize PC-3-Bcl-2 expressing prostate cancer cells to irradiation. World J Urol. 2008;26(5):509–516.
    1. Mena S, Rodriguez ML, Ortega A, Priego S, Obrador E, Asensi M, Petschen I, Cerda M, Brown BD, Estrela JM. Glutathione and Bcl-2 targeting facilitates elimination by chemoradiotherapy of human A375 melanoma xenografts overexpressing bcl-xl, bcl-2, and mcl-1. J Transl Med. 2012;10:8.
    1. Chanvorachote P, Pongrakhananon V, Wannachaiyasit S, Luanpitpong S, Rojanasakul Y, Nimmannit U. Curcumin sensitizes lung cancer cells to cisplatin-induced apoptosis through superoxide anion-mediated Bcl-2 degradation. Cancer Invest. 2009;27(6):624–635.
    1. Kannaiyan R, Hay HS, Rajendran P, Li F, Shanmugam MK, Vali S, Abbasi T, Kapoor S, Sharma A, Kumar AP. Celastrol inhibits proliferation and induces chemosensitization through down-regulation of NF-kappaB and STAT3 regulated gene products in multiple myeloma cells. Br J Pharmacol. 2011;164(5):1506–1521.
    1. Choi YH, Park HS. Apoptosis induction of U937 human leukemia cells by diallyl trisulfide induces through generation of reactive oxygen species. J Biomed Sci. 2012;19(1):50.
    1. Estaquier J, Vallette F, Vayssiere JL, Mignotte B. The mitochondrial pathways of apoptosis. Adv Exp Med Biol. 2012;942:157–183.
    1. Gupta S, Kass GE, Szegezdi E, Joseph B. The mitochondrial death pathway: a promising therapeutic target in diseases. J Cell Mol Med. 2009;13(6):1004–1033.
    1. Li Z, Huang Y, Dong F, Li W, Ding L, Yu G, Xu D, Yang Y, Xu X, Tong D. Swainsonine promotes apoptosis in human oesophageal squamous cell carcinoma cells in vitro and in vivo through activation of mitochondrial pathway. J Biosci. 2012;37(6):1005–1016.

Source: PubMed

3
订阅