Cognitive Reserve, Alzheimer's Neuropathology, and Risk of Dementia: A Systematic Review and Meta-Analysis

Monica E Nelson, Dylan J Jester, Andrew J Petkus, Ross Andel, Monica E Nelson, Dylan J Jester, Andrew J Petkus, Ross Andel

Abstract

Cognitive reserve (CR) may reduce the risk of dementia. We summarized the effect of CR on progression to mild cognitive impairment (MCI) or dementia in studies accounting for Alzheimer's disease (AD)-related structural pathology and biomarkers. Literature search was conducted in Web of Science, PubMed, Embase, and PsycINFO. Relevant articles were longitudinal, in English, and investigating MCI or dementia incidence. Meta-analysis was conducted on nine articles, four measuring CR as cognitive residual of neuropathology and five as composite psychosocial proxies (e.g., education). High CR was related to a 47% reduced relative risk of MCI or dementia (pooled-hazard ratio: 0.53 [0.35, 0.81]), with residual-based CR reducing risk by 62% and proxy-based CR by 48%. CR protects against MCI and dementia progression above and beyond the effect of AD-related structural pathology and biomarkers. The finding that proxy-based measures of CR rivaled residual-based measures in terms of effect on dementia incidence underscores the importance of early- and mid-life factors in preventing dementia later.

Keywords: Aβ; CSF; Cognitive reserve; Dementia; MRI; Tau.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) chart illustrating the process for final selection of articles. Search terms included: cognitive reserve, cognitive capacity, brain reserve, neural reserve, brain maintenance, residual variance, transition, cognitive decline, cognitive deterioration, progress*, conver*, neurodegeneration, risk, incident, longitudinal, magnetic resonance imaging, MRI, grey matter, gray matter, white matter, positron emission tomography, PET, beta amyloid, tau, mild cognitive impairment, MCI, Alzheimer*, AD, dement*, mild neurocognitive disorder, and major neurocognitive disorder
Fig. 2
Fig. 2
Forest plot conveying the risk of progression to MCI or all-cause dementia. Petkus et al. (2019), Pettigrew et al. (2017), Soldan et al. (2015), and van Loenhoud et al. (2017; 2019) controlled for structural indicators of Alzheimer’s disease such as hippocampal volume. Hohman et al. (2016), Soldan et al. (2013), and Udeh-Momoh et al. (2019) controlled for biomarkers of Alzheimer’s disease such as Aβ or tau. Further, Hohman et al. (2016), Petkus et al. (2019), and van Loenhoud et al. (2017; 2019) examined cognitive reserve using the residual variance approach, whereas Pettigrew et al. (2017), Soldan et al. (2013; 2015), Udeh-Momoh et al. (2019), and Xu et al. (2019) used the composite proxy approach
Fig. 3
Fig. 3
Funnel plot of the included studies to estimate publication bias. The long-dotted line is the fixed-effect model estimate and the short-dotted line is the random-effects model estimate. Egger’s Test of the Intercept: p = 0.22

References

    1. Albert M, Zhu Y, Moghekar A, Mori S, Miller MI, Soldan A, et al. Predicting progression from normal cognition to mild cognitive impairment for individuals at 5 years. Brain. 2018;141(3):877–887. doi: 10.1093/brain/awx365.
    1. Allegri RF, Taragano FE, Krupitzki H, Serrano CM, Dillon C, Sarasola D, et al. Role of cognitive reserve in progression from mild cognitive impairment to dementia. Dementia & Neuropsychologia. 2010;4(1):28–34. doi: 10.1590/S1980-57642010DN40100005.
    1. Andel R, Crowe M, Pedersen NL, Mortimer J, Crimmins E, Johansson B, et al. Complexity of work and risk of Alzheimer's disease: A population-based study of Swedish twins. The Journals of Gerontology: Series B. 2005;60(5):P251–P258. doi: 10.1093/geronb/60.5.p251.
    1. Arenaza-Urquijo EM, Vemuri P. Resistance vs resilience to Alzheimer disease: Clarifying terminology for preclinical studies. Neurology. 2018;90(15):695–703. doi: 10.1212/wnl.0000000000005303.
    1. Arenaza-Urquijo EM, Vemuri P. Improving the resistance and resilience framework for aging and dementia studies. Alzheimer's Research & Therapy. 2020;12(1):1–4. doi: 10.1186/s13195-020-00609-2.
    1. Association A. 2019 Alzheimer’s Disease Facts and Figures. Alzheimers & Dementia. 2019;15(3):321–387. doi: 10.1016/j.jalz.2019.01.010.
    1. Bartres-Faz D, Arenaza-Urquijo EM. Structural and functional imaging correlates of cognitive and brain reserve hypotheses in healthy and pathological aging. Brain Topography. 2011;24(3–4):340–357. doi: 10.1007/s10548-011-0195-9.
    1. Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset. American Journal of Public Health. 1998;88(9):1337–1342. doi: 10.2105/ajph.88.9.1337.
    1. Cabeza R, Albert M, Belleville S, Craik FIM, Duarte A, Grady CL, et al. Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing. Nature Reviews Neuroscience. 2018;19(11):701–710. doi: 10.1038/s41583-018-0068-2.
    1. Clouston SAP, Glymour MM, Terrera GM. Educational inequalities in aging-related declines in fluid cognition and the onset of cognitive pathology. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. 2015;1(3):303–310. doi: 10.1016/j.dadm.2015.06.001.
    1. Dekhtyar S, Marseglia A, Xu W, Darin-Mattsson A, Wang HX, Fratiglioni L. Genetic risk of dementia mitigated by cognitive reserve: A cohort study. Annals of Neurology. 2019;86(1):68–78. doi: 10.1002/ana.25501.
    1. Dekhtyar S, Wang HX, Scott K, Goodman A, Koupil I, Herlitz A. A life-course study of cognitive reserve in dementia–From childhood to old age. The American Journal of Geriatric Psychiatry. 2015;23(9):885–896. doi: 10.1016/j.jagp.2015.02.002.
    1. Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–463. doi: 10.1111/j.0006-341x.2000.00455.x.
    1. Garibotto V, Borroni B, Kalbe E, Herholz K, Salmon E, Holtoff V, et al. Education and occupation as proxies for reserve in aMCI converters and AD: FDG-PET evidence. Neurology. 2008;71(17):1342–1349. doi: 10.1212/01.wnl.0000327670.62378.c0.
    1. Henneman WJP, Sluimer JD, Barnes J, van der Flier WM, Sluimer IC, Fox NC, et al. Hippocampal atrophy rates in Alzheimer disease: Added value over whole brain volume measures. Neurology. 2009;72(11):999–1007. doi: 10.1212/01.wnl.0000344568.09360.31.
    1. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine. 2002;21(11):1539–1558. doi: 10.1002/sim.1186.
    1. Hoenig MC, Bischof GN, Hammes J, Faber J, Fliessbach K, van Eimeren T, et al. Tau pathology and cognitive reserve in Alzheimer's disease. Neurobiology of Aging. 2017;57:1–7. doi: 10.1016/j.neurobiolaging.2017.05.004.
    1. Hohman TJ, McLaren DG, Mormino EC, Gifford KA, Libon DJ, Jefferson AL. Asymptomatic Alzheimer disease: Defining resilience. Neurology. 2016;87(23):2443–2450. doi: 10.1212/WNL.0000000000003397.
    1. Jack CR, Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: Toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia. 2018;14(4):535–562. doi: 10.1016/j.jalz.2018.02.018.
    1. Jones RN, Manly J, Glymour MM, Rentz DM, Jefferson AL, Stern Y. Conceptual and measurement challenges in research on cognitive reserve. Journal of the International Neuropsychological Society. 2011;17(4):593–601. doi: 10.1017/S1355617710001748.
    1. Karp A, Kareholt I, Qiu C, Bellander T, Winblad B, Fratiglioni L. Relation of education and occupation-based socioeconomic status to incident Alzheimer's disease. American Journal of Epidemiology. 2004;159(2):175–183. doi: 10.1093/aje/kwh018.
    1. Kröger E, Andel R, Lindsay J, Benounissa Z, Verreault R, Laurin D. Is complexity of work associated with risk of dementia? The Canadian Study of Health and Aging. American Journal of Epidemiology. 2008;167(7):820–830. doi: 10.1093/aje/kwm382.
    1. Lockhart SN, DeCarli C. Structural imaging measures of brain aging. Neuropsychology Review. 2014;24(3):271–289. doi: 10.1007/s11065-014-9268-3.
    1. Lopez ME, Turrero A, Cuesta P, Lopez-Sanz D, Bruna R, Marcos A, et al. Searching for primary predictors of conversion from mild cognitive impairment to Alzheimer's disease: A multivariate follow-up study. Journal of Alzheimer's Disease. 2016;52(1):133–143. doi: 10.3233/jad-151034.
    1. Marioni RE, Valenzuela MJ, van den Hout A, Brayne C, Matthews FE. Active cognitive lifestyle is associated with positive cognitive health transitions and compression of morbidity from age sixty-five. PLoS ONE. 2012;7(12):1–6. doi: 10.1371/journal.pone.0050940.
    1. Mazzeo S, Padiglioni S, Bagnoli S, Bracco L, Nacmias B, Sorbi S, et al. The dual role of cognitive reserve in subjective cognitive decline and mild cognitive impairment: A 7-year follow-up study. Journal of Neurology. 2019;266(2):487–497. doi: 10.1007/s00415-018-9164-5.
    1. Menardi A, Pascual-Leone A, Fried PJ, Santarnecchi E. The role of cognitive reserve in Alzheimer's disease and aging: A multi-modal imaging review. Journal of Alzheimer's Disease. 2018;66(4):1341–1362. doi: 10.3233/jad-180549.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6(7):1–6. doi: 10.1371/journal.pmed.1000097.
    1. Myung W, Lee C, Park JH, Woo SY, Kim S, Kim S, et al. Occupational attainment as risk factor for progression from mild cognitive impairment to Alzheimer's disease: A CREDOS study. Journal of Alzheimer's Disease. 2017;55(1):283–292. doi: 10.3233/jad-160257.
    1. Nilsson J, Lövdén M. Naming is not explaining: Future directions for the "cognitive reserve" and "brain maintenance" theories. Alzheimer's Research & Therapy. 2018;10(1):1–7. doi: 10.1186/s13195-018-0365-z.
    1. Oschwald J, Guye S, Liem F, Rast P, Willis S, Röcke C, et al. Brain structure and cognitive ability in healthy aging: A review on longitudinal correlated change. Reviews in the Neurosciences. 2019;31(1):1–57. doi: 10.1515/revneuro-2018-0096.
    1. Osone A, Arai R, Hakamada R, Shimoda K. Impact of cognitive reserve on the progression of mild cognitive impairment to Alzheimer's disease in Japan. Geriatrics & Gerontology International. 2015;15(4):428–434. doi: 10.1111/ggi.12292.
    1. Osone A, Arai R, Hakamada R, Shimoda K. Cognitive and brain reserve in conversion and reversion in patients with mild cognitive impairment over 12 months of follow-up. Journal of Clinical and Experimental Neuropsychology. 2016;38(10):1084–1093. doi: 10.1080/13803395.2016.1191620.
    1. Petkus AJ, Resnick SM, Rapp SR, Espeland MA, Gatz M, Widaman KF, et al. General and domain-specific cognitive reserve, mild cognitive impairment, and dementia risk in older women. Alzheimer's & Dementia: Translational Research & Clinical Interventions. 2019;5:118–128. doi: 10.1016/j.trci.2019.02.003.
    1. Pettigrew C, Soldan A, Li S, Lu Y, Wang MC, Selnes OA, et al. Relationship of cognitive reserve and APOE status to the emergence of clinical symptoms in preclinical Alzheimer's disease. Cognitive Neuroscience. 2013;4(3–4):136–142. doi: 10.1080/17588928.2013.831820.
    1. Pettigrew C, Soldan A, Zhu YX, Wang MC, Brown T, Miller M, et al. Cognitive reserve and cortical thickness in preclinical Alzheimer's disease. Brain Imaging and Behavior. 2017;11(2):357–367. doi: 10.1007/s11682-016-9581-y.
    1. Pyun J-M, Park YH, Kim H-R, Suh J, Kang MJ, Kim BJ, et al. Posterior atrophy predicts time to dementia in patients with amyloid-positive mild cognitive impairment. Alzheimer's Research & Therapy. 2017;9(1):1–9. doi: 10.1186/s13195-017-0326-y.
    1. Reed BR, Mungas D, Farias ST, Harvey D, Beckett L, Widaman K, et al. Measuring cognitive reserve based on the decomposition of episodic memory variance. Brain. 2010;133(8):2196–2209. doi: 10.1093/brain/awq154.
    1. Rentz DM, Mormino EC, Papp KV, Betensky RA, Sperling RA, Johnson KA. Cognitive resilience in clinical and preclinical Alzheimer's disease: The association of amyloid and tau burden on cognitive performance. Brain Imaging and Behavior. 2017;11(2):383–390. doi: 10.1007/s11682-016-9640-4.
    1. Roe CM, Fagan AM, Williams MM, Ghoshal N, Aeschleman M, Grant EA, et al. Improving CSF biomarker accuracy in predicting prevalent and incident Alzheimer disease. Neurology. 2011;76(6):501–510. doi: 10.1212/WNL.0b013e31820af900.
    1. Soldan A, Pettigrew C, Albert M. Evaluating cognitive reserve through the prism of preclinical Alzheimer disease. Psychiatric Clinics of North America. 2018;41(1):65–77. doi: 10.1016/j.psc.2017.10.006.
    1. Soldan A, Pettigrew C, Li SS, Wang MC, Moghekar A, Selnes OA, et al. Relationship of cognitive reserve and cerebrospinal fluid biomarkers to the emergence of clinical symptoms in preclinical Alzheimer's disease. Neurobiology of Aging. 2013;34(12):2827–2834. doi: 10.1016/j.neurobiolaging.2013.06.017.
    1. Soldan A, Pettigrew C, Lu Y, Wang MC, Selnes O, Albert M, et al. Relationship of medial temporal lobe atrophy, APOE genotype, and cognitive reserve in preclinical Alzheimer's disease. Human Brain Mapping. 2015;36(7):2826–2841. doi: 10.1002/hbm.22810.
    1. Sorensen, A., Blazhenets, G., Rucker, G., Schiller, F., Meyer, P. T., & Frings, L. (2019). Prognosis of conversion of mild cognitive impairment to Alzheimer's dementia by voxel-wise Cox regression based on FDG PET data. Neuroimage: Clinical, 21, 1–8. 10.1016/j.nicl.2018.101637.
    1. Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society. 2002;8(3):448–460. doi: 10.1017/S1355617702813248.
    1. Stern Y. Cognitive reserve. Neuropsychologia. 2009;47(10):2015–2028. doi: 10.1016/j.neuropsychologia.2009.03.004.
    1. Stern Y. Cognitive reserve in ageing and Alzheimer's disease. Lancet Neurology. 2012;11(11):1006–1012. doi: 10.1016/s1474-4422(12)70191-6.
    1. Stern Y, Arenaza-Urquijo EM, Bartrés-Faz D, Belleville S, Cantilon M, Chetelat G, et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer's & Dementia. 2020;16(9):1305–1311. doi: 10.1016/j.jalz.2018.07.219.
    1. Tokuchi R, Hishikawa N, Kurata T, Sato K, Kono S, Yamashita T, et al. Clinical and demographic predictors of mild cognitive impairment for converting to Alzheimer's disease and reverting to normal cognition. Journal of the Neurological Sciences. 2014;346(1–2):288–292. doi: 10.1016/j.jns.2014.09.012.
    1. Udeh-Momoh CT, Su B, Evans S, Zheng B, Sindi S, Tzoulaki I, et al. Cortisol, amyloid-β, and reserve predicts Alzheimer's disease progression for cognitively normal older adults. Journal of Alzheimer's Disease. 2019;70(2):551–560. doi: 10.3233/JAD-181030.
    1. van Loenhoud AC, van der Flier WM, Wink AM, Dicks E, Groot C, Twisk J, et al. Cognitive reserve and clinical progression in Alzheimer disease: A paradoxical relationship. Neurology. 2019;93(4):e334–e346. doi: 10.1212/wnl.0000000000007821.
    1. van Loenhoud AC, Wink AM, Groot C, Verfaillie SCJ, Twisk J, Barkhof F, et al. A neuroimaging approach to capture cognitive reserve: Application to Alzheimer's disease. Human Brain Mapping. 2017;38(9):4703–4715. doi: 10.1002/hbm.23695.
    1. Vemuri P, Weigand SD, Knopman DS, Kantarci K, Boeve BF, Petersen RC, et al. Time-to-event voxel-based techniques to assess regional atrophy associated with MCI risk of progression to AD. Neuroimage. 2011;54(2):985–991. doi: 10.1016/j.neuroimage.2010.09.004.
    1. Wang Y, Du Y, Li J, Qiu C. Lifespan intellectual factors, genetic susceptibility, and cognitive phenotypes in aging: Implications for interventions. Frontiers in Aging Neuroscience. 2019;11:1–11. doi: 10.3389/fnagi.2019.00129.
    1. Wells, G. A., Shea, B., O’Connell, D., Peterson, J., Welch, V., Losos, M., et al. (2019). The Newcastle-Ottawa Scale (NOS) for assessing quality of nonrandomised studies in meta-analyses. . Accessed 18 March 2020.
    1. Xu H, Yang R, Qi X, Dintica C, Song R, Bennett DA, et al. Association of lifespan cognitive reserve indicator with dementia risk in the presence of brain pathologies. JAMA Neurology. 2019;76(10):1184–1191. doi: 10.1001/jamaneurol.2019.2455.
    1. Zahodne LB, Manly JJ, Brickman AM, Narkhede A, Griffith EY, Guzman VA, et al. Is residual memory variance a valid method for quantifying cognitive reserve? A longitudinal application. Neuropsychologia. 2015;77:260–266. doi: 10.1016/j.neuropsychologia.2015.09.009.
    1. Zahodne LB, Manly JJ, Brickman AM, Siedlecki KL, Decarli C, Stern Y. Quantifying cognitive reserve in older adults by decomposing episodic memory variance: Replication and extension. Journal of the International Neuropsychological Society. 2013;19(8):854–862. doi: 10.1017/s1355617713000738.
    1. Zissimopoulos J, Crimmins E, St Clair P. The value of delaying Alzheimer's disease onset. Forum for Health Economics & Policy. 2014;18(1):25–39. doi: 10.1515/fhep-2014-0013.

Source: PubMed

3
订阅