Prognostic impact of [18F]fluorothymidine and [18F]fluoro-D-glucose baseline uptakes in patients with lung cancer treated first-line with erlotinib

Matthias Scheffler, Thomas Zander, Lucia Nogova, Carsten Kobe, Deniz Kahraman, Markus Dietlein, Irini Papachristou, Lukas Heukamp, Reinhard Büttner, Ron Boellaard, Adriaan A Lammertsma, Silvia Querings, Erich Stoelben, Walburga Engel-Riedel, Bernd Neumaier, Jürgen Wolf, Matthias Scheffler, Thomas Zander, Lucia Nogova, Carsten Kobe, Deniz Kahraman, Markus Dietlein, Irini Papachristou, Lukas Heukamp, Reinhard Büttner, Ron Boellaard, Adriaan A Lammertsma, Silvia Querings, Erich Stoelben, Walburga Engel-Riedel, Bernd Neumaier, Jürgen Wolf

Abstract

3'-deoxy-3'-[(18)F]fluoro-L-thymidine (FLT) and 2'-deoxy-2'-[(18)F]fluoro-D-glucose (FDG) are used to visualize proliferative and metabolic activity of tumors. In this study we aimed at evaluating the prognostic value of FLT and FDG uptake measured by positron emission tomography (PET) in patients with metastatic non-small cell lung cancer (NSCLC) prior to systemic therapy with erlotinib. FLT and FDG maximum standardized uptake (SUVmax) values per patient were analyzed in 40 chemotherapy naive patients with advanced NSCLC (stage IV) before treatment with erlotinib. Prior therapy median SUVmax was 6.6 for FDG and 3.0 for FLT, respectively. In univariate analysis, patients with an FDG SUVmax <6.6 had a significantly better overall survival (16.3 months [95% confidence interval [CI] 7.1-25.4 months]) compared to patients with an FDG SUVmax ≥6.6 (3.1 months [95% CI 0.6-5.5 months]) (p<0.001, log rank). Similarly, low FLT uptake (SUVmax <3.0) was associated with significantly longer survival (10.3 months (0-23.3 months, 95% CI) compared to high FLT uptake (3.4 months (0-8.1 months, 95% CI) (p = 0.027). The independent prognostic value of baseline FDG uptake was demonstrated in multivariate analysis (p = 0.05, Cox regression). These data suggest that baseline SUVmax values for both FDG and FLT PET might be further developed as markers for prognostic stratification of patients in advanced NSCLC treated with tyrosine kinase inhibitors (TKI) directed against the epidermal growth factor receptor (EGFR).

Trial registration: Clinicaltrials.gov, Identifier: NCT00568841.

Conflict of interest statement

Competing Interests: During the termination phase of the trial, we have received research fundings from Roche, a commercial source. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Example of two patients with…
Figure 1. Example of two patients with low and high baseline uptake of FDG and FLT.
The patient shown in figure A with low uptake is a 66-year old female patient who had an overall survival of 21.3 months, whereas the patient in B with a high uptake is a 56-year old female patient with an overall survival of only 1.5 months. In both cases, the respective most active lesion was chosen for assessment.
Figure 2. Kaplan Meier curves showing overall…
Figure 2. Kaplan Meier curves showing overall survival depending on SUVmax values.
A) Overall survival of patients with high (>6.7; grey) or low (3; grey) or low (

Figure 3. Correlation of the EGFR mutational…

Figure 3. Correlation of the EGFR mutational status with Ki-67 staining in %.

Figure 3. Correlation of the EGFR mutational status with Ki-67 staining in %.
Figure 3. Correlation of the EGFR mutational…
Figure 3. Correlation of the EGFR mutational status with Ki-67 staining in %.

References

    1. Hoang JK, Hoagland LF, Coleman RE, Coan AD, Herndon JE 2nd, et al. (2008) Prognostic value of fluorine-18 fluorodeoxyglucose positron emission tomography imaging in patients with advanced-stage non-small-cell lung carcinoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 26: 1459–1464.
    1. Paesmans M, Sculier JP, Libert P, Bureau G, Dabouis G, et al. (1995) Prognostic factors for survival in advanced non-small-cell lung cancer: univariate and multivariate analyses including recursive partitioning and amalgamation algorithms in 1,052 patients. The European Lung Cancer Working Party. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 13: 1221–1230.
    1. Takigawa N, Segawa Y, Okahara M, Maeda Y, Takata I, et al. (1996) Prognostic factors for patients with advanced non-small cell lung cancer: univariate and multivariate analyses including recursive partitioning and amalgamation. Lung cancer 15: 67–77.
    1. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, et al. (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353: 123–132.
    1. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, et al. (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350: 2129–2139.
    1. Pao W, Miller V, Zakowski M, Doherty J, Politi K, et al. (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101: 13306–13311.
    1. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, et al. (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. The New England journal of medicine 361: 947–957.
    1. Rosell R, Moran T, Queralt C, Porta R, Cardenal F, et al. (2009) Screening for epidermal growth factor receptor mutations in lung cancer. The New England journal of medicine 361: 958–967.
    1. Fukuoka M, Wu YL, Thongprasert S, Sunpaweravong P, Leong SS, et al. (2011) Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). Journal of clinical oncology : official journal of the American Society of Clinical Oncology 29: 2866–2874.
    1. Querings S, Altmuller J, Ansen S, Zander T, Seidel D, et al. (2011) Benchmarking of mutation diagnostics in clinical lung cancer specimens. PloS one 6: e19601.
    1. Sasaki R, Komaki R, Macapinlac H, Erasmus J, Allen P, et al. (2005) [18F]fluorodeoxyglucose uptake by positron emission tomography predicts outcome of non-small-cell lung cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 23: 1136–1143.
    1. Vesselle H, Freeman JD, Wiens L, Stern J, Nguyen HQ, et al. (2007) Fluorodeoxyglucose uptake of primary non-small cell lung cancer at positron emission tomography: new contrary data on prognostic role. Clinical cancer research : an official journal of the American Association for Cancer Research 13: 3255–3263.
    1. Agarwal M, Brahmanday G, Bajaj SK, Ravikrishnan KP, Wong CY (2010) Revisiting the prognostic value of preoperative (18)F-fluoro-2-deoxyglucose ((18)F-FDG) positron emission tomography (PET) in early-stage (I & II) non-small cell lung cancers (NSCLC). European journal of nuclear medicine and molecular imaging 37: 691–698.
    1. Zander T, Scheffler M, Nogova L, Kobe C, Engel-Riedel W, et al. (2011) Early prediction of nonprogression in advanced non-small-cell lung cancer treated with erlotinib by using [(18)F]fluorodeoxyglucose and [(18)F]fluorothymidine positron emission tomography. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 29: 1701–1708.
    1. Mileshkin L, Hicks RJ, Hughes BG, Mitchell PL, Charu V, et al. (2011) Changes in 18F-fluorodeoxyglucose and 18F-fluorodeoxythymidine positron emission tomography imaging in patients with non-small cell lung cancer treated with erlotinib. Clinical cancer research : an official journal of the American Association for Cancer Research 17: 3304–3315.
    1. Huang W, Zhou T, Ma L, Sun H, Gong H, et al. (2011) Standard uptake value and metabolic tumor volume of (1)(8)F-FDG PET/CT predict short-term outcome early in the course of chemoradiotherapy in advanced non-small cell lung cancer. European journal of nuclear medicine and molecular imaging 38: 1628–1635.
    1. Hatt M, Visvikis D, Pradier O, Cheze-le Rest C (2011) Baseline (1)(8)F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer. European journal of nuclear medicine and molecular imaging 38: 1595–1606.
    1. McArthur GA, Puzanov I, Amaravadi R, Ribas A, Chapman P, et al. (2012) Marked, homogeneous, and early [18F]fluorodeoxyglucose-positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 30: 1628–1634.
    1. Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, et al. (2003) Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 44: 1426–1431.
    1. Yap CS, Czernin J, Fishbein MC, Cameron RB, Schiepers C, et al. (2006) Evaluation of thoracic tumors with 18F-fluorothymidine and 18F-fluorodeoxyglucose-positron emission tomography. Chest 129: 393–401.
    1. Vesselle H, Grierson J, Muzi M, Pugsley JM, Schmidt RA, et al. (2002) In vivo validation of 3′deoxy-3′-[(18)F]fluorothymidine ([(18)F]FLT) as a proliferation imaging tracer in humans: correlation of [(18)F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clinical cancer research : an official journal of the American Association for Cancer Research 8: 3315–3323.
    1. Chalkidou A, Landau DB, Odell EW, Cornelius VR, O'Doherty MJ, et al. (2012) Correlation between Ki-67 immunohistochemistry and 18F-Fluorothymidine uptake in patients with cancer: A systematic review and meta-analysis. European journal of cancer
    1. Hommura F, Dosaka-Akita H, Mishina T, Nishi M, Kojima T, et al. (2000) Prognostic significance of p27KIP1 protein and ki-67 growth fraction in non-small cell lung cancers. Clinical cancer research : an official journal of the American Association for Cancer Research 6: 4073–4081.
    1. Shiba M, Kohno H, Kakizawa K, Iizasa T, Otsuji M, et al. (2000) Ki-67 immunostaining and other prognostic factors including tobacco smoking in patients with resected nonsmall cell lung carcinoma. Cancer 89: 1457–1465.
    1. Martin B, Paesmans M, Mascaux C, Berghmans T, Lothaire P, et al. (2004) Ki-67 expression and patients survival in lung cancer: systematic review of the literature with meta-analysis. British journal of cancer 91: 2018–2025.
    1. Dosaka-Akita H, Hommura F, Mishina T, Ogura S, Shimizu M, et al. (2001) A risk-stratification model of non-small cell lung cancers using cyclin E, Ki-67, and ras p21: different roles of G1 cyclins in cell proliferation and prognosis. Cancer research 61: 2500–2504.
    1. Ullrich RT, Zander T, Neumaier B, Koker M, Shimamura T, et al. (2008) Early detection of erlotinib treatment response in NSCLC by 3′-deoxy-3′-[F]-fluoro-L-thymidine ([F]FLT) positron emission tomography (PET). PloS one 3: e3908.
    1. Sohn HJ, Yang YJ, Ryu JS, Oh SJ, Im KC, et al. (2008) [18F]Fluorothymidine positron emission tomography before and 7 days after gefitinib treatment predicts response in patients with advanced adenocarcinoma of the lung. Clinical cancer research : an official journal of the American Association for Cancer Research 14: 7423–7429.
    1. Scheffler M, Kobe C, Zander T, Nogova L, Kahraman D, et al. (2012) Monitoring reversible and irreversible EGFR inhibition with erlotinib and afatinib in a patient with EGFR-mutated non-small cell lung cancer (NSCLC) using sequential [18F]fluorothymidine (FLT-)PET. Lung cancer 77: 617–620.
    1. Herrmann K, Buck AK, Schuster T, Junger A, Wieder HA, et al. (2011) Predictive value of initial 18F-FLT uptake in patients with aggressive non-Hodgkin lymphoma receiving R-CHOP treatment. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 52: 690–696.
    1. Li Z, Graf N, Herrmann K, Junger A, Aichler M, et al. (2012) FLT-PET Is Superior to FDG-PET for Very Early Response Prediction in NPM-ALK-Positive Lymphoma Treated with Targeted Therapy. Cancer research 72: 5014–5024.
    1. Gaertner J, Wolf J, Hallek M, Glossmann JP, Voltz R (2011) Standardizing integration of palliative care into comprehensive cancer therapy–a disease specific approach. Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer 19: 1037–1043.
    1. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, et al. (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. Journal of the National Cancer Institute 92: 205–216.
    1. Hamacher K, Coenen HH, Stocklin G (1986) Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 27: 235–238.
    1. van Westreenen HL, Cobben DC, Jager PL, van Dullemen HM, Wesseling J, et al. (2005) Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 46: 400–404.
    1. Lara-Guerra H, Chung CT, Schwock J, Pintilie M, Hwang DM, et al. (2012) Histopathological and immunohistochemical features associated with clinical response to neoadjuvant gefitinib therapy in early stage non-small cell lung cancer. Lung cancer 76: 235–241.
    1. Liao S, Penney BC, Wroblewski K, Zhang H, Simon CA, et al. (2012) Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. European journal of nuclear medicine and molecular imaging 39: 27–38.
    1. Bats AS, Hugonnet F, Huchon C, Bensaid C, Pierquet-Ghazzar N, et al. (2012) Prognostic significance of mediastinal 18F-FDG uptake in PET/CT in advanced ovarian cancer. European journal of nuclear medicine and molecular imaging 39: 474–480.
    1. Martoni AA, Di Fabio F, Pinto C, Castellucci P, Pini S, et al. (2011) Prospective study on the FDG-PET/CT predictive and prognostic values in patients treated with neoadjuvant chemoradiation therapy and radical surgery for locally advanced rectal cancer. Annals of oncology : official journal of the European Society for Medical Oncology/ESMO 22: 650–656.
    1. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, et al. (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nature medicine 4: 1334–1336.
    1. Zhang CC, Yan Z, Li W, Kuszpit K, Painter CL, et al. (2012) [(18)F]FLT-PET imaging does not always “light up” proliferating tumor cells. Clinical cancer research : an official journal of the American Association for Cancer Research 18: 1303–1312.
    1. Aarntzen EH, Srinivas M, De Wilt JH, Jacobs JF, Lesterhuis WJ, et al. (2011) Early identification of antigen-specific immune responses in vivo by [18F]-labeled 3′-fluoro-3′-deoxy-thymidine ([18F]FLT) PET imaging. Proceedings of the National Academy of Sciences of the United States of America 108: 18396–18399.
    1. Yang J, Ramnath N, Moysich KB, Asch HL, Swede H, et al. (2006) Prognostic significance of MCM2, Ki-67 and gelsolin in non-small cell lung cancer. BMC cancer 6: 203.
    1. Tsubochi H, Sato N, Hiyama M, Kaimori M, Endo S, et al. (2006) Combined analysis of cyclooxygenase-2 expression with p53 and Ki-67 in nonsmall cell lung cancer. The Annals of thoracic surgery 82: 1198–1204.
    1. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 50 Suppl 1: 122S–150S.
    1. Kahraman D, Scheffler M, Zander T, Nogova L, Lammertsma AA, et al. (2011) Quantitative analysis of response to treatment with erlotinib in advanced non-small cell lung cancer using 18F-FDG and 3′-deoxy-3′-18F-fluorothymidine PET. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 52: 1871–1877.

Source: PubMed

3
订阅