Elevation of Inflammatory Cytokines and Proteins after Intra-Articular Ankle Fracture: A Cross-Sectional Study of 47 Ankle Fracture Patients

That Minh Pham, Lars Henrik Frich, Kate Lykke Lambertsen, Søren Overgaard, Hagen Schmal, That Minh Pham, Lars Henrik Frich, Kate Lykke Lambertsen, Søren Overgaard, Hagen Schmal

Abstract

Introduction: Intra-articular fractures are the leading etiology for posttraumatic osteoarthritis (PTOA) in the ankle. Elevation of proinflammatory cytokines following intra-articular fracture may lead to synovial catabolism and cartilage degradation. We aimed to compare cytokine levels in injured and healthy ankle joints, examine the longer-term cytokine levels in fractured ankles, and investigate the association between cytokine levels in fractured ankles and plasma.

Materials and methods: In this cross-sectional study, synovial fluid (SF) and plasma of forty-seven patients with acute intra-articular ankle fractures and eight patients undergoing implant removal were collected prior to surgery. We determined concentrations of sixteen inflammatory cytokines, two cartilage degradation proteins, and four metabolic proteins and compared the levels in acutely injured ankles with those of the healthy contralateral side or during metal removal. Cytokine levels in injured ankles were also compared to serum cytokine levels. Nonparametric Wilcoxon rank-sum and Spearman tests were used for statistical analysis, and a p value below 0.05 was considered significant.

Results: Compared to the healthy ankles, the synovial fluid in ankles with acute intra-articular fracture had elevated levels of several proinflammatory cytokines and proteases (IL-1β, IL-2, IL-6, IL-8, IL-12p70, TNF, IFNγ, MMP-1, MMP-3, and MMP-9) and anti-inflammatory cytokines (IL-1RA, IL-4, IL-10, and IL-13). The levels of cartilage degradation products (ACG, CTX-2) and metabolic mediators (TGF-β1 and TGF-β2) were also significantly higher. Synovial concentrations of ACG, IL-12-p70, IFNγ, IL-4, and bFGF correlated with serum levels. While most of the examined synovial cytokines were unchanged after implant removal, IL-4 and IL-6 levels were upregulated.

Conclusions: We show that an acute ankle fracture is followed by an inflammatory reaction and cartilage degeneration. These data contribute to the current understanding of the protein regulation behind the development of PTOA and is a further step towards supplementing the current surgical treatment. This cross-sectional study was "retrospectively registered" on the 31th October 2017 at ClinicalTrials.gov (NCT03769909). The registration was carried out after inclusion of the first patient and prior to finalization of patient recruitment and statistical analyses: https://ichgcp.net/clinical-trials-registry/NCT03769909?term=NCT03769909&draw=2&rank=1.

Conflict of interest statement

All authors declare no competing interests.

Copyright © 2021 That Minh Pham et al.

Figures

Figure 1
Figure 1
Flow diagram showing the study design.
Figure 2
Figure 2
Levels of neutrophils and monocytes in synovial fluid from ankle fracture patients (N=8). The neutrophil level increased significantly (P=0.008) after injury and decreased again after 7 days (R value=-0.81), while the monocyte level shows the opposite changes (R value=0.81).
Figure 3
Figure 3
Number of leucocytes in serum and synovial fluid from ankle fracture paitents (N=8). The serum leucocyte level remained constant over the first 7 days after ankle fracture (p=0.50), while the leucocyte level in synovial fluid (effusion) decreased after ankle fracture (p=0.0002).

References

    1. Saltzman C. L., Salamon M. L., Blanchard G. M., et al. Epidemiology of ankle arthritis: report of a consecutive series of 639 patients from a tertiary orthopaedic center. The Iowa Orthopaedic Journal. 2005;25:44–46.
    1. Valderrabano V., Horisberger M., Russell I., Dougall H., Hintermann B. Etiology of ankle osteoarthritis. Clinical Orthopaedics and Related Research. 2009;467(7):1800–1806. doi: 10.1007/s11999-008-0543-6.
    1. Koval K. J., Lurie J., Zhou W., et al. Ankle fractures in the elderly: what you get depends on where you live and who you see. Journal of Orthopaedic Trauma. 2005;19(9):635–639. doi: 10.1097/01.bot.0000177105.53708.a9.
    1. Solgaard S., Petersen V. S. Epidemiology of distal radius fractures. Acta Orthopaedica Scandinavica. 2009;56(5):391–393.
    1. Brown T. D., Johnston R. C., Saltzman C. L., Marsh J. L., Buckwalter J. A. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. Journal of Orthopaedic Trauma. 2006;20(10):739–744. doi: 10.1097/01.bot.0000246468.80635.ef.
    1. Giannoudis P. V., Tzioupis C., Papathanassopoulos A., Obakponovwe O., Roberts C. Articular step-off and risk of post-traumatic osteoarthritis. Evidence today. Injury. 2010;41(10):986–995. doi: 10.1016/j.injury.2010.08.003.
    1. Marsh J. L., Buckwalter J., Gelberman R., et al. Articular fractures: does an anatomic reduction really change the result? The Journal of Bone and Joint Surgery. American Volume. 2002;84(7):1259–1271. doi: 10.2106/00004623-200207000-00026.
    1. Donken C. C., Verhofstad M. H., Edwards M. J., van Laarhoven C. J. Twenty-one-year follow-up of supination-external rotation type II-IV (OTA type B) ankle fractures: a retrospective cohort study. Journal of Orthopaedic Trauma. 2012;26(8):e108–e114. doi: 10.1097/BOT.0b013e31822c4ea5.
    1. Dirschl D. R., Marsh L. J., Buckwalter J. A., et al. Articular fractures. The Journal of the American Academy of Orthopaedic Surgeons. 2004;12(6):416–423. doi: 10.5435/00124635-200411000-00006.
    1. Lubbeke A., Salvo D., Stern R., Hoffmeyer P., Holzer N., Assal M. Risk factors for post-traumatic osteoarthritis of the ankle: an eighteen year follow-up study. International Orthopaedics. 2012;36(7):1403–1410. doi: 10.1007/s00264-011-1472-7.
    1. Schmal H., Salzmann G. M., Niemeyer P., et al. Early intra-articular complement activation in ankle fractures. BioMed Research International. 2014;2014:8. doi: 10.1155/2014/426893.426893
    1. Adams S. B., Setton L. A., Bell R. D., et al. Inflammatory cytokines and matrix metalloproteinases in the synovial fluid after intra-articular ankle fracture. Foot & ankle international. 2015;36(11):1264–1271. doi: 10.1177/1071100715611176.
    1. Sward P., Struglics A., Englund M., Roos H. P., Frobell R. B. Soft tissue knee injury with concomitant osteochondral fracture is associated with higher degree of acute joint inflammation. The American Journal of Sports Medicine. 2014;42(5):1096–1102. doi: 10.1177/0363546514524924.
    1. Bigoni M., Sacerdote P., Turati M., et al. Acute and late changes in intraarticular cytokine levels following anterior cruciate ligament injury. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2013;31(2):315–321. doi: 10.1002/jor.22208.
    1. Kaplan D. J., Cuellar V. G., Jazrawi L. M., Strauss E. J. Biomarker changes in anterior cruciate ligament-deficient knees compared with healthy controls. Arthroscopy - Journal of Arthroscopic and Related Surgery. 2017;33(5):1053–1061. doi: 10.1016/j.arthro.2016.11.019.
    1. Irie K., Uchiyama E., Iwaso H. Intraarticular inflammatory cytokines in acute anterior cruciate ligament injured knee. The Knee. 2003;10(1):93–96. doi: 10.1016/S0968-0160(02)00083-2.
    1. Bigoni M., Zanchi N., Omeljaniuk R. J., et al. Role of interleukin-10 in the synovial fluid of the anterior cruciate ligament injured knee. European Review for Medical and Pharmacological Sciences. 2019;23(3):932–940. doi: 10.26355/eurrev_201902_16979.
    1. Furman B. D., Kimmerling K. A., Zura R. D., et al. Articular ankle fracture results in increased synovitis, synovial macrophage infiltration, and synovial fluid concentrations of inflammatory cytokines and chemokines. Arthritis & rheumatology (Hoboken, NJ) 2015;67(5):1234–1239. doi: 10.1002/art.39064.
    1. Godoy-Santos A. L., Ranzoni L., Teodoro W. R., et al. Increased cytokine levels and histological changes in cartilage, synovial cells and synovial fluid after malleolar fractures. Injury. 2017;48(Suppl 4):S27–s33. doi: 10.1016/S0020-1383(17)30772-6.
    1. Adams S. B., Leimer E. M., Setton L. A., et al. Inflammatory microenvironment persists after bone healing in intra-articular ankle fractures. Foot & Ankle International. 2017;38(5):479–484. doi: 10.1177/1071100717690427.
    1. Siqueira M. B., Frangiamore S., Klika A. K., Gajewski N., Barsoum W. K., Higuera C. A. Comparison of synovial fluid cytokine levels between traumatic knee injury and end-stage osteoarthritis. The Journal of Knee Surgery. 2017;30(2):128–133. doi: 10.1055/s-0036-1583269.
    1. Cuschieri S. The STROBE guidelines. Saudi Journal of Anaesthesia. 2019;13(Supplement 1):S31–Ss4.
    1. Adams S. B., Jr., Nettles D. L., Jones L. C., Miller S. D., Guyton G. P., Schon L. C. Inflammatory cytokines and cellular metabolites as synovial fluid biomarkers of posttraumatic ankle arthritis. Foot & Ankle International. 2014;35(12):1241–1249. doi: 10.1177/1071100714550652.
    1. Schweitzer M. E., van Leersum M., Ehrlich S. S., Wapner K. Fluid in normal and abnormal ankle joints: amount and distribution as seen on MR images. AJR. American Journal of Roentgenology. 1994;162(1):111–114. doi: 10.2214/ajr.162.1.8273647.
    1. Haller J. M., McFadden M., Kubiak E. N., Higgins T. F. Inflammatory cytokine response following acute tibial plateau fracture. Journal of Bone and Joint Surgery - American Volume. 2015;97(6):478–483. doi: 10.2106/JBJS.N.00200.
    1. Chubinskaya S., Wimmer M. A. Key pathways to prevent posttraumatic arthritis for future molecule-based therapy. Cartilage. 2013;4(Supplement 3):13s–21s. doi: 10.1177/1947603513487457.
    1. Wojdasiewicz P., Poniatowski L. A., Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators of Inflammation. 2014;2014:19. doi: 10.1155/2014/561459.561459
    1. Langenmair E. R., Kubosch E. J., Salzmann G. M., Beck S., Schmal H. Clinical trial and in vitro study for the role of cartilage and synovia in acute articular infection. Mediators of Inflammation. 2015;2015:9. doi: 10.1155/2015/430324.430324
    1. Schenker M. L., Mauck R. L., Ahn J., Mehta S. Pathogenesis and prevention of posttraumatic osteoarthritis after intra-articular fracture. The Journal of the American Academy of Orthopaedic Surgeons. 2014;22(1):20–28. doi: 10.5435/JAAOS-22-01-20.
    1. Anderson D. D., Marsh J. L., Brown T. D. The pathomechanical etiology of post-traumatic osteoarthritis following intraarticular fractures. The Iowa Orthopaedic Journal. 2011;31:1–20.
    1. Schmal H., Salzmann G. M., Langenmair E. R., Henkelmann R., Sudkamp N. P., Niemeyer P. Biochemical characterization of early osteoarthritis in the ankle. ScientificWorldJournal. 2014;2014, article 434802:9. doi: 10.1155/2014/434802.

Source: PubMed

3
订阅