Biological aspects of orthodontic tooth movement: A review of literature

Moshabab A Asiry, Moshabab A Asiry

Abstract

This review of literature describes the cellular and molecular biology of orthodontic tooth movement, including various theories and effect of chemical mediators on tooth movement. The better understanding of the tooth movement mechanism will inspire the clinicians to design and implement effective appliances that will result in maximum benefits and minimum tissue damage to the patients. This paper also emphasizes the applied aspect of different medication and hormones, during orthodontic treatment, on the signaling molecules which produce bone remodeling.

Keywords: Biological tooth movement; Medications; Orthodontics; Periodontal ligament.

Figures

Fig. 1
Fig. 1
Flowchart presenting the effect of applied forces on Periosteum.
Fig. 2
Fig. 2
Flowchart presenting the effect of applied forces on Endosteum.
Fig. 3
Fig. 3
Bio-electric theory of tooth movement.

References

    1. Adachi H., Igarashi K., Mitani H., Shinoda H. Effects of topical administration of a bisphosphonate (risedronate) on orthodontic tooth movements in rats. J. Dent. Res. 1997;73:1478–1486.
    1. Al-Ansari S., Sangsuwon C., Vongthongleur T., Kwal R., Teo M., Lee Y.B., Nervina J., Teixeira C., Alikhani M. Biological principles behind accelerated tooth movement. Seminars Orthod. 2015;21(3):151–161.
    1. Al-Khateeb S., Forsberg C.M., de Josselin de Jong E., Mansson A.B. A longitudinal laser fluorescence study of white spot lesions in orthodontic patients. Am. J. Orthod. Dentofacial. Orthop. 1998;113:595–602.
    1. Arias O.R., Marquez-Orozco M.C. Aspirin, acetaminophen, and ibuprofen: their effects on orthodontic tooth movement. Am. J. Orthod. Dentofacial. Ortho. 2006;130:364–370.
    1. Bartzela T., Türp J.C., Motschall E., Maltha J.C. Medication effects on the rate of orthodontic tooth movement: a systematic literature review. Am. J. Orthod. Dentofacial. Orthop. 2009;135:16–26.
    1. Bassett, C.A., Becker, R.O., 1962. Generation of electric potentials by bone in response to mechanical stress. Science 137(3535), 1063–1064.
    1. Baumrind S. A reconsideration of the property of the pressure tension hypothesis. Am. J. Orthod. 1969;55:12–22.
    1. Bhalaji S.I., Shetty S.V. The effect of prostaglandin E2 on tooth movement in young rabbits. J. Ind. Orthod. Soc. 1996;27:85–92.
    1. Burstone C.J. The biomechanics of tooth movement. In: Kraus B.S., Riedel R.A., editors. Vistas in Orthodontics. Lea and Febiger; Philadelphia: 1962.
    1. Chumbley A.B., Tuncay O.C. The effect of indometacin (aspirin-like drug) on the rate of orthodontic tooth movement. Am. J. Orthod. 1986;89:312–314.
    1. Davidovitch Z., Finkelson M.D., Steigman S., Shanfeld J.L., Montgomery P.C., Korostoff E. Electric currents, bone remodeling and orthodontic tooth movement I. The effect of electric currents on periodontal cyclic nucleotides. Am. J. Orthod. 1980;77(1):14–32.
    1. Davidovitch Z., Finkelson M.D., Steigman S., Shanfeld J.L., Montgomery P.C., Korostoff E. Electric currents, bone remodeling and orthodontic tooth movement II. Increase in the rate of tooth movement and periodontal cyclic nucleotides level by combined force and electric currents. Am. J. Orthod. 1980;77(1):33–47.
    1. Davidovitch Z., Nikolay O.F., Nyan P.W., Shanfield J.L. Neurotransmitters, cytokines and the control of alveolar bone remodeling in orthodontics. Dent. Clin. North Am. 1988;32(3):411–414.
    1. Diravidamani K., Sivalingam S.K., Agarwal V. Drugs influencing orthodontic tooth movement: an overall review. J. Pharm. Bio Allied Scis. 2012;4(2):S299–S303.
    1. Farrar J.N. De Vinne Press; New York: 1888. Irregularities of the Teeth and Their Correction; p. 658.
    1. Garlet T.P., Coelho U., Silva J.S. Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur. J. Oral Sci. 2007;115(5):355–362.
    1. Grimm F.M. Bone bending a feature of orthodontic tooth movement. Am. J. Orthod. 1972;62(4):384–393.
    1. Haruyama N., Igarashi K., Saeki S., Otsuka-Isoya M., Shinoda H., Mitani H. Estrous-cycle-dependent variation in orthodontic tooth movement. J. Dent. Res. 2002;81:406–410.
    1. Jimi E., Ikebe T., Takahashi N. Interleukin-1α activates an NF-κB-like factor in osteoclast-like cells. J. Biol. Chem. 1996;271(9):4605–4608.
    1. Kashyap S. Current concepts in the biology of orthodontic tooth movement: a brief overview. NJDSR. 2016;1(4):28–31.
    1. Krishnan V., Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am. J. Orthod. Dentofacial. Ortho. 2006;129 469e.1–460e.
    1. Krishnan V., Davidovitch Z. On a path to unfolding the biological mechanisms of orthodontic tooth movement. J. Dent. Res. 2009;88(7):597–608.
    1. Laudano O.M., Cesolari J.A., Esnarriaga J., Rista M., Piombo G., Maglione C. Gastrointestinal damage induced by celecoxib and rofecoxib in rats. Dig. Dis. Sci. 2001;46:779–784.
    1. Lee S.K., Pi S.H., Kim S.H., Min K.S., Lee H.J., Chang H.S. Substance P regulates macrophage inflammatory protein 3alpha/chemokine C-C ligand 20 (CCL20) with heme oxygenase-1 in human periodontal ligament cells. Clin. Exp. Immunol. 2007;150:567–575.
    1. Masella R.S., Meister M. Current concepts in the biology of orthodontic tooth movement. Am. J. Orthod. Dentofacial. Ortho. 2006;129(4):458–468.
    1. Melsen B. Biological reaction of alveolar bone to orthodontic tooth movement. Angle Orthod. 1999;69(2):151–158.
    1. Middleton J., Patterson A.M., Gardner L., Schmutz M., Ashton B.A. Leukocyte extravasation: chemokine transport and presentation by the endothelium. Blood. 2002;100:3853–3860.
    1. Mohammed A.H., Tatakis D.N., Dziak R. Leukotrienes in orthodontic tooth movement. Am. J. Orthod. Dentofacial. Ortho. 1989;95:231–237.
    1. Norevall L.I., Forsgren S., Matsson L. Expression of neuropeptides (CGRP, substance P) during and after orthodontic tooth movement in the rat. Eur. J. Orthod. 1995;17:311–325.
    1. O'Brien C.A., Gubrij I., Lin S.C. STAT3 activation in stromal/osteoblastic cells is required for induction of the receptor activator of NF-κB ligand and stimulation of osteoclastogenesis by gp130 utilizing cytokines or interleukin-1butnot1,25-dihydroxy vitaminD3 or parathyroid hormone. J. Biol. Chem. 1999;274(27):19301–19308.
    1. Oppenheim A. Tissue changes, particularly of the bone, incident to tooth movement. Am. Orthod. 1911;3:57–67.
    1. Oswal D., Sable R.B., Patil A.S., Moge A., Aphale S. Levels of matrix metalloproteinase-7 and osteopontin in human gingival crevicular fluid during initial tooth movement. APOS Trends Orthod. 2015;5:77–82.
    1. Patil A.S., Sable R.B., Kothari R.M. Role of Insulin-like growth factors (IGFs), their receptors and genetic regulation in the chondrogenesis and growth of the mandibular condylar cartilage. J. Cell. Physiol. 2012;227:1796–1804.
    1. Perkins D.J., Kniss D.A. Tumornecrosis factor alpha promotessustainedcyclooxygenase2 expression attenuation by dexamethasone and NSAIDs. Prostaglandins. 1997;54(4):727–743.
    1. Proffit, W.R., Fields, H.W., 2000. Contemporary Orthodontics, fifth ed. Mosby, St Louis, pp. 296–325.
    1. Proffit, W.R., Fields, H.W., 2000. Contemporary Orthodontics, fifth ed. Mosby, St Louis, pp. 290–295.
    1. Proffit W.R., Fields H.W., Sarver D.M. third ed. Mosby Elsevier; St. Louis: 1999. Contemporary Orthodontics; pp. 296–308.
    1. Roche J.J., Cisneros G.J., Acs G. The effect of acetaminophen on tooth movement in rabbits. Angle Orthod. 1997;67:231–236.
    1. Sabane A., Patil A., Swami V., Nagarajan P. Biology of tooth movement. Br. J. Med. Med. Res. 2016;16(12):1–10.
    1. Samuelsson B., Granstrom E., Hamberg M., Hammarstrom S. Prostaglandins. Ann Rev. Biochem. 1975;44:669–694.
    1. Sandstedt C. Einige beiträgezur theorie der zahnregu lierung. Nord. Tandlaeg. Tidskr. 1904;5:236–256.
    1. Schwarz A.M. Tissue changes incident to orthodontic tooth movement. Int. J. Orthod. 1932;18:331–352.
    1. Seibert K., Zhang Y., Leahy K., Hanser S., Masferrer J.L., Perkins W. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc. Natl. Acad. Sci. 1994;91:12013–12017.
    1. Soma S., Iwamoto M., Higuchi Y., Kurisu K. Effects of continuous infusion of PTH on experimental tooth movement in rats. J. Bone Miner. Res. 1999;14:546–554.
    1. Soma S., Matsumoto S., Higuchi Y., Takano-Yamamoto T., Yamashita K., Kurisu K. Local and chronic application of PTH accelerates tooth movement in rats. J. Dent. Res. 2000;79:1717–1724.
    1. Shirazi M., Dehpour A.R., Jafari F. The effect of thyroid hormone on orthodontic tooth movement in rats. J. Clin. Pediatr. Dent. 1999;23:259–264.
    1. Suda T., Takahashi N., Martin T.J. Modulation of osteoclast differentiation. Endocr. Rev. 1992;13:66–80.
    1. Swanson C., Lorentzon M., Conaway H.H., Lerner U.H. Glucocorticoid regulation of osteoclast differentiation and expression of receptor activator of nuclear factor-kappa B (NF-kappa B) ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvarial bones. Endocrinology. 2006;147(7):3613–3622.
    1. Taddei S.R., Andrade I., Jr., Queiroz-Junior C.M. Role of CCR2 in orthodontic tooth movement. Am. J. Orthod. Dent. Facial. Orthop. 2012;141(2):153–160.
    1. Tuncay O.C. Biologic elements of tooth movement. In: Tuncay O.C., editor. The Invisalign System. Quintessence; Berlin: 2006.
    1. Vandevska-Radunovic V. Neural modulation of inflammatory reactions in dental tissues incident to orthodontic tooth movement. A review of the literature. Eur. J. Orthod. 1999;21:231–247.
    1. Vayda P., Loveless J., Miller R., Theroux K. The effect or short term analgesic usage on the rate of orthodontic tooth movement [abstract] J. Dent. Res. 2000;79:614.
    1. Verna C., Dalstra M., Melsen B. The rate and the type of orthodontic tooth movement is influenced by bone turnover in a rat model. Eur. J. Orthod. 2000;22:343–352.
    1. Yamasaki K., Miura F., Suda T. Prostaglandin as a mediator of bone resorption induced by experimental tooth movement in rats. J. Dent. Res. 1980;59(10):1635–1642.
    1. Yamaguchi M., Kojima T., Kanekawa M., Aihara N., Nogimura A., Kasai K. Neuropeptides stimulate production of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha in human dental pulp cells. Inflamm. Res. 2004;53:199–204.
    1. Yamashiro T., Takano-Yamamoto T. Influences of ovariectomy on experimental tooth movement in the rat. J. Dent. Res. 2001;80:1858–1861.
    1. Yasuda H., Shima N., Nakagawa N. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA. 1998;95(7):3597–3602.
    1. Zengo A.N., Pawluk R.J., Bassett C.A. Stress induced bioelectric potentials in the dento-alveolar complex. Am. J. Orthod. 1973;64(1):17–27.
    1. Zhou D., Hughes B., King G.J. Histomorphometric and biochemical study of osteoclasts at orthodontic compression sites in the rat during indometacin inhibition. Arch. Oral Biol. 1997;42:717–726.

Source: PubMed

3
订阅