Olive Polyphenols and the Metabolic Syndrome

Bandhita Saibandith, Jeremy P E Spencer, Ian R Rowland, Daniel M Commane, Bandhita Saibandith, Jeremy P E Spencer, Ian R Rowland, Daniel M Commane

Abstract

Here, the effects of consuming polyphenol-rich olive products, including olive leaves, their crude extract, and extra virgin olive oil, on aspects of the metabolic syndrome are reviewed. We have sought to summarize the available scientific evidence from dietary intervention trials demonstrating a role for these phytochemicals in ameliorating aberrant glucose metabolism, high blood pressure and elevated blood lipids, and we discuss the potential mechanisms underpinning these observations. Searches for relevant literature published in English were conducted via PubMed and Science Direct. Based on published dietary intervention studies, there is convincing evidence to show that olive polyphenols, independently of olive lipids, reduce risk factors for metabolic syndrome, in particular by improving blood sugar and blood pressure control, and in reducing low density lipoprotein oxidation. There is more limited evidence to suggest that the consumption of olive polyphenols or related products can reduce body weight and visceral fat or impede weight gain, and similarly there are some limited data suggesting improved lipid profiles. There is some mechanistic data to support observations made in human volunteers, but further work is needed in this area. The consumption of olive polyphenols within the context of a healthy pattern of food intake may, in part, explain the reduced risk of metabolic disease associated with adherence to the Mediterranean diet.

Keywords: central obesity; dyslipidaemia; hyperglycaemia; hypertension; metabolic syndrome; olive polyphenols.

Conflict of interest statement

The authors declare no conflict of interest. The research presented here was carried out independently of the study funders Comvita Ltd.; the sponsors have had no role in the writing or the review of this manuscript, and the authors do not stand to gain financially or otherwise from its conclusions.

Figures

Figure 1
Figure 1
Summary of the quality of evidence from intervention studies demonstrating the influence of olive polyphenols on aspects of the metabolic syndrome.

References

    1. Cases J., Romain C., Dallas C., Gerbi A., Cloarec M. Regular consumption of Fiit-ns, a polyphenol extract from fruit and vegetables frequently consumed within the Mediterranean diet, improves metabolic ageing of obese volunteers: A randomized, double-blind, parallel trial. Int. J. Food Sci. Nutr. 2015;66:120–125. doi: 10.3109/09637486.2014.971229.
    1. O’Neill S., O’Driscoll L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. 2015;16:1–12. doi: 10.1111/obr.12229.
    1. Stern M.P., Williams K., Gonzalez-Villalpando C., Hunt K.J., Haffner S.M. Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care. 2004;27:2676–2681. doi: 10.2337/diacare.27.11.2676.
    1. Kaur J. A Comprehensive Review on Metabolic Syndrome. Cardiol. Res. Pract. 2014;2014:943162. doi: 10.1155/2014/943162.
    1. Brouwer B.G., Visseren F.L., van der Graaf Y. The effect of leisure-time physical activity on the presence of metabolic syndrome in patients with manifest arterial disease. The SMART study. Am. Heart J. 2007;154:1146–1152. doi: 10.1016/j.ahj.2007.07.031.
    1. Chang S.H., Chen M.C., Chien N.H., Wu L.Y. CE: Original Research: Examining the Links between Lifestyle Factors and Metabolic Syndrome. Am. J. Nurs. 2016 doi: 10.1097/01.NAJ.0000508662.88220.7a.
    1. Macready A.L., George T.W., Chong M.F., Alimbetov D.S., Jin Y., Vidal A., Spencer J.P., Kennedy O.B., Tuohy K.M., Minihane A.M., et al. Flavonoid-rich fruit and vegetables improve microvascular reactivity and inflammatory status in men at risk of cardiovascular disease—FLAVURS: A randomized controlled trial. Am. J. Clin. Nutr. 2014;99:479–489. doi: 10.3945/ajcn.113.074237.
    1. Babio N., Toledo E., Estruch R., Ros E., Martinez-Gonzalez M.A., Castaner O., Bullo M., Corella D., Aros F., Gomez-Gracia E., et al. Mediterranean diets and metabolic syndrome status in the PREDIMED randomized trial. CMAJ. 2014;186:E649–E657. doi: 10.1503/cmaj.140764.
    1. Benavente-García O., Castillo J., Lorente J., Ortuño A., Del Rio J.A. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem. 2000;68:457–462. doi: 10.1016/S0308-8146(99)00221-6.
    1. Tuck K.L., Hayball P.J. Major phenolic compounds in olive oil: Metabolism and health effects. J. Nutr. Biochem. 2002;13:636–644. doi: 10.1016/S0955-2863(02)00229-2.
    1. Babio N., Bullo M., Salas-Salvado J. Mediterranean diet and metabolic syndrome: The evidence. Public Health Nutr. 2009;12:1607–1617. doi: 10.1017/S1368980009990449.
    1. Martínez-González M.Á., Corella D., Salas-Salvadó J., Ros E., Covas M.I., Fiol M., Wärnberg J., Arós F., Ruíz-Gutiérrez V., Lamuela-Raventós R.M., et al. Cohort profile: Design and methods of the PREDIMED study. Int. J. Epidemiol. 2012;41:377–385. doi: 10.1093/ije/dyq250.
    1. Violi F., Loffredo L., Pignatelli P., Angelico F., Bartimoccia S., Nocella C., Cangemi R., Petruccioli A., Monticolo R., Pastori D., et al. Extra virgin olive oil use is associated with improved post-prandial blood glucose and LDL cholesterol in healthy subjects. Nutr. Diabetes. 2015;5:e172. doi: 10.1038/nutd.2015.23.
    1. Raederstorff D. Antioxidant activity of olive polyphenols in humans: A review. Int. J. Vitam. Nutr. Res. 2009;79:152–165. doi: 10.1024/0300-9831.79.3.152.
    1. Khalatbary A.R., Zarrinjoei G.R. Anti-Inflammatory Effect of Oleuropein in Experimental Rat Spinal Cord Trauma. Iran. Red Crescent Med. J. 2012;14:229–234.
    1. Bisignano G., Tomaino A., Lo Cascio R., Crisafi G., Uccella N., Saija A. On the in vitro antimicrobial activity of oleuropein and hydroxytyrosol. J. Pharm. Pharmacol. 1999;51:971–974. doi: 10.1211/0022357991773258.
    1. Bulotta S., Celano M., Lepore S.M., Montalcini T., Pujia A., Russo D. Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: Focus on protection against cardiovascular and metabolic diseases. J. Transl. Med. 2014;12:219. doi: 10.1186/s12967-014-0219-9.
    1. El S.N., Karakaya S. Olive tree (Olea europaea) leaves: Potential beneficial effects on human health. Nutr. Rev. 2009;67:632–638. doi: 10.1111/j.1753-4887.2009.00248.x.
    1. De Leonardis A., Aretini A., Alfano G., Macciola V., Ranalli G. Isolation of a hydroxytyrosol-rich extract from olive leaves (Olea europaea L.) and evaluation of its antioxidant properties and bioactivity. Eur. Food Res. Technol. 2008;226:653–659. doi: 10.1007/s00217-007-0574-3.
    1. Pandey K.B., Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med. Cell. Longev. 2009;2:270–278. doi: 10.4161/oxim.2.5.9498.
    1. Ozyilkan O., Colak D., Akcali Z., Basturk B. Olive: Fruit of peace against cancer. Asian Pac. J. Cancer Prev. 2005;6:77–82.
    1. Carnevale R., Loffredo L., Del Ben M., Angelico F., Nocella C., Petruccioli A., Bartimoccia S., Monticolo R., Cava E., Violi F. Extra virgin olive oil improves post-prandial glycemic and lipid profile in patients with impaired fasting glucose. Clin. Nutr. 2016;36:782–787. doi: 10.1016/j.clnu.2016.05.016.
    1. Ahmad-Qasem M.H., Ahmad-Qasem B.H., Barrajón-Catalán E., Micol V., Cárcel J.A., García-Pérez J.V. Drying and storage of olive leaf extracts. Influence on polyphenols stability. Ind. Crops Prod. 2016;79:232–239. doi: 10.1016/j.indcrop.2015.11.006.
    1. Yateem H., Co R.C., St. A., Beit Sahour P., Afaneh I., Al Rimawi F. Optimum Conditions for Oleuropein Extraction from Olive Leaves. Int. J. Appl. Sci. Technol. 2014;4:153–157.
    1. Lockyer S., Yaqoob P., Spencer J.P.E., Rowland I. Olive leaf phenolics and cardiovascular risk reduction: Physiological effects and mechanisms of action. Nutr. Aging. 2012;1:125–140.
    1. Ghanbari R., Anwar F., Alkharfy K.M., Gilani A.-H., Saari N. Valuable Nutrients and Functional Bioactives in Different Parts of Olive (Olea europaea L.)—A Review. Int. J. Mol. Sci. 2012;13:3291–3340. doi: 10.3390/ijms13033291.
    1. Kontogianni V.G., Gerothanassis I.P. Phenolic compounds and antioxidant activity of olive leaf extracts. Nat. Prod. Res. 2012;26:186–189. doi: 10.1080/14786419.2011.582842.
    1. Abaza L., Taamalli A., Nsir H., Zarrouk M. Olive Tree (Olea europeae L.) Leaves: Importance and Advances in the Analysis of Phenolic Compounds. Antioxidants. 2015;4:682–698. doi: 10.3390/antiox4040682.
    1. Japon-Lujan R., Janeiro P., Luque de Castro M.D. Solid-liquid transfer of biophenols from olive leaves for the enrichment of edible oils by a dynamic ultrasound-assisted approach. J. Agric. Food Chem. 2008;56:7231–7235. doi: 10.1021/jf800748p.
    1. Omar S.H. Oleuropein in Olive and its Pharmacological Effects. Sci. Pharm. 2010;78:133–154. doi: 10.3797/scipharm.0912-18.
    1. Barbaro B., Toietta G., Maggio R., Arciello M., Tarocchi M., Galli A., Balsano C. Effects of the Olive-Derived Polyphenol Oleuropein on Human Health. Int. J. Mol. Sci. 2014;15:18508–18524. doi: 10.3390/ijms151018508.
    1. De Bock M., Derraik J.G.B., Brennan C.M., Biggs J.B., Morgan P.E., Hodgkinson S.C., Hofman P.L., Cutfield W.S. Olive (Olea europaea L.) Leaf Polyphenols Improve Insulin Sensitivity in Middle-Aged Overweight Men: A Randomized, Placebo-Controlled, Crossover Trial. PLoS ONE. 2013;8:e57622. doi: 10.1371/journal.pone.0057622.
    1. Lockyer S., Corona G., Yaqoob P., Spencer J.P., Rowland I. Secoiridoids delivered as olive leaf extract induce acute improvements in human vascular function and reduction of an inflammatory cytokine: A randomised, double-blind, placebo-controlled, cross-over trial. Br. J. Nutr. 2015;114:75–83. doi: 10.1017/S0007114515001269.
    1. Perrinjaquet-Moccetti T., Busjahn A., Schmidlin C., Schmidt A., Bradl B., Aydogan C. Food supplementation with an olive (Olea europaea L.) leaf extract reduces blood pressure in borderline hypertensive monozygotic twins. Phytother. Res. 2008;22:1239–1242. doi: 10.1002/ptr.2455.
    1. Fonollá J., Díaz-Ropero P., de la Fuente E., Quintela J.C. MS358 One-Month Consumption of an Olive Leaf Extract Enhances Cardiovascular Status in Hypercholesterolemic Subjects. Atheroscler. Suppl. 2010;11:182. doi: 10.1016/S1567-5688(10)70859-X.
    1. Susalit E., Agus N., Effendi I., Tjandrawinata R.R., Nofiarny D., Perrinjaquet-Moccetti T., Verbruggen M. Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: Comparison with Captopril. Phytomedicine. 2011;18:251–258. doi: 10.1016/j.phymed.2010.08.016.
    1. Wainstein J., Ganz T., Boaz M., Bar Dayan Y., Dolev E., Kerem Z., Madar Z. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J. Med. Food. 2012;15:605–610. doi: 10.1089/jmf.2011.0243.
    1. Lockyer S., Rowland I., Spencer J.P.E., Yaqoob P., Stonehouse W. Impact of phenolic-rich olive leaf extract on blood pressure, plasma lipids and inflammatory markers: A randomised controlled trial. Eur. J. Nutr. 2017;56:1421–1432. doi: 10.1007/s00394-016-1188-y.
    1. Ramirez-Tortosa M.C., Urbano G., Lopez-Jurado M., Nestares T., Gomez M.C., Mir A., Ros E., Mataix J., Gil A. Extra-virgin olive oil increases the resistance of LDL to oxidation more than refined olive oil in free-living men with peripheral vascular disease. J. Nutr. 1999;129:2177–2183.
    1. Ferrara L.A., Raimondi A.S., d’Episcopo L., Guida L., Dello Russo A., Marotta T. Olive oil and reduced need for antihypertensive medications. Arch. Intern. Med. 2000;160:837–842. doi: 10.1001/archinte.160.6.837.
    1. Rozati M., Barnett J., Wu D., Handelman G., Saltzman E., Wilson T., Li L., Wang J., Marcos A., Ordovás J.M., et al. Cardio-metabolic and immunological impacts of extra virgin olive oil consumption in overweight and obese older adults: A randomized controlled trial. Nutr. Metab. 2015;12:28. doi: 10.1186/s12986-015-0022-5.
    1. Álvarez-Pérez J., Sánchez-Villegas A., Díaz-Benítez E.M., Ruano-Rodríguez C., Corella D., Martínez-González M.Á., Estruch R., Salas-Salvadó J., Serra-Majem L. Influence of a Mediterranean Dietary Pattern on Body Fat Distribution: Results of the PREDIMED–Canarias Intervention Randomized Trial. J. Am. Coll. Nutr. 2016;35:568–580. doi: 10.1080/07315724.2015.1102102.
    1. Estruch R., Martínez-González M.A., Corella D., Salas-Salvadó J., Fitó M., Chiva-Blanch G., Fiol M., Gómez-Gracia E., Arós F., Lapetra J., et al. Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: a prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial. Lancet Diabetes Endocrinol. 2016;4:666–676. doi: 10.1016/S2213-8587(16)30085-7.
    1. Marrugat J., Covas M.I., Fito M., Schroder H., Miro-Casas E., Gimeno E., Lopez-Sabater M.C., de la Torre R., Farre M. Effects of differing phenolic content in dietary olive oils on lipids and LDL oxidation—A randomized controlled trial. Eur. J. Nutr. 2004;43:140–147. doi: 10.1007/s00394-004-0452-8.
    1. Fito M., Cladellas M., de la Torre R., Marti J., Alcantara M., Pujadas-Bastardes M., Marrugat J., Bruguera J., Lopez-Sabater M.C., Vila J., et al. Antioxidant effect of virgin olive oil in patients with stable coronary heart disease: A randomized, crossover, controlled, clinical trial. Atherosclerosis. 2005;181:149–158. doi: 10.1016/j.atherosclerosis.2004.12.036.
    1. Covas M.-I. Olive oil and the cardiovascular system. Pharmacol. Res. 2007;55:175–186. doi: 10.1016/j.phrs.2007.01.010.
    1. Razquin C., Martinez J.A., Martinez-Gonzalez M.A., Mitjavila M.T., Estruch R., Marti A. A 3 years follow-up of a Mediterranean diet rich in virgin olive oil is associated with high plasma antioxidant capacity and reduced body weight gain. Eur. J. Clin. Nutr. 2009;63:1387–1393. doi: 10.1038/ejcn.2009.106.
    1. Moreno-Luna R., Munoz-Hernandez R., Miranda M.L., Costa A.F., Jimenez-Jimenez L., Vallejo-Vaz A.J., Muriana F.J., Villar J., Stiefel P. Olive oil polyphenols decrease blood pressure and improve endothelial function in young women with mild hypertension. Am. J. Hypertens. 2012;25:1299–1304. doi: 10.1038/ajh.2012.128.
    1. Vendrame S., Del Bo C., Ciappellano S., Riso P., Klimis-Zacas D. Berry Fruit Consumption and Metabolic Syndrome. Antioxidants. 2016;5 doi: 10.3390/antiox5040034.
    1. Wang S., Moustaid-Moussa N., Chen L., Mo H., Shastri A., Su R., Bapat P., Kwun I., Shen C.-L. Novel insights of dietary polyphenols and obesity. J. Nutr. Biochem. 2014;25:1–18. doi: 10.1016/j.jnutbio.2013.09.001.
    1. Schröder H., Fitó M., Estruch R., Martínez-González M.A., Corella D., Salas-Salvadó J., Lamuela-Raventós R., Ros E., Salaverría I., Fiol M., et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J. Nutr. 2011;141 doi: 10.3945/jn.110.135566.
    1. Baxter A.J., Coyne T., McClintock C. Dietary patterns and metabolic syndrome—A review of epidemiologic evidence. Asia Pac. J. Clin. Nutr. 2006;15:134–142.
    1. Martinez-Gonzalez M.A. The SUN cohort study (Seguimiento University of Navarra) Public Health Nutr. 2006;9:127–131.
    1. Shen Y., Song S.J., Keum N., Park T. Olive leaf extract attenuates obesity in high-fat diet-fed mice by modulating the expression of molecules involved in adipogenesis and thermogenesis. Evid. Based Complement. Alternat. Med. 2014;2014:971890. doi: 10.1155/2014/971890.
    1. Kim Y., Choi Y., Park T. Hepatoprotective effect of oleuropein in mice: Mechanisms uncovered by gene expression profiling. Biotechnol. J. 2010;5:950–960. doi: 10.1002/biot.201000068.
    1. Cao K., Xu J., Zou X., Li Y., Chen C., Zheng A., Li H., Li H., Szeto I.M., Shi Y., et al. Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice. Free Radic. Biol. Med. 2014;67:396–407. doi: 10.1016/j.freeradbiomed.2013.11.029.
    1. Hsu C.L., Wu C.H., Huang S.L., Yen G.C. Phenolic compounds rutin and o-coumaric acid ameliorate obesity induced by high-fat diet in rats. J. Agric. Food Chem. 2009;57:425–431. doi: 10.1021/jf802715t.
    1. Kwon E.-Y., Jung U.J., Park T., Yun J.W., Choi M.-S. Luteolin Attenuates Hepatic Steatosis and Insulin Resistance Through the Interplay Between the Liver and Adipose Tissue in Mice with Diet-Induced Obesity. Diabetes. 2015;64:1658–1669. doi: 10.2337/db14-0631.
    1. Cho A.S., Jeon S.M., Kim M.J., Yeo J., Seo K.I., Choi M.S., Lee M.K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol. 2010;48:937–943. doi: 10.1016/j.fct.2010.01.003.
    1. Ono M., Fujimori K. Antiadipogenic effect of dietary apigenin through activation of AMPK in 3T3-L1 cells. J. Agric. Food Chem. 2011;59:13346–13352. doi: 10.1021/jf203490a.
    1. Komaki E., Yamaguchi S., Maru I., Kinoshita M., Kakehi K., Ohta Y., Tsukada Y. Identification of Anti-ALPHA;-Amylase Components from Olive Leaf Extracts. Food Sci. Technol. Res. 2003;9:35–39. doi: 10.3136/fstr.9.35.
    1. Park H.S., Kim S.H., Kim Y.S., Ryu S.Y., Hwang J.T., Yang H.J., Kim G.H., Kwon D.Y., Kim M.S. Luteolin inhibits adipogenic differentiation by regulating PPARgamma activation. Biofactors. 2009;35:373–379. doi: 10.1002/biof.38.
    1. Drira R., Chen S., Sakamoto K. Oleuropein and hydroxytyrosol inhibit adipocyte differentiation in 3 T3-L1 cells. Life Sci. 2011;89:708–716. doi: 10.1016/j.lfs.2011.08.012.
    1. Sakaue M., Maeda K., Ohno S., Ito T. Screening for Identification of Personalized Food to Promote Adiponectin Secretion in Patients with Cancer. Anticancer Res. 2016;36:3673–3677.
    1. Drira R., Sakamoto K. Hydroxytyrosol stimulates lipolysis via A-kinase and extracellular signal-regulated kinase activation in 3T3-L1 adipocytes. Eur. J. Nutr. 2014;53:743–750. doi: 10.1007/s00394-013-0578-7.
    1. Hmimed S., Belarbi M., Visioli F. Hydroxytyrosol augments the redox status of high fat diet-fed rats. PharmaNutrition. 2016;4:139–142. doi: 10.1016/j.phanu.2016.09.001.
    1. Giordano E., Dávalos A., Visioli F. Chronic hydroxytyrosol feeding modulates glutathione-mediated oxido-reduction pathways in adipose tissue: A nutrigenomic study. Nutr. Metab. Cardiovasc. Dis. 2014;24:1144–1150. doi: 10.1016/j.numecd.2014.05.003.
    1. Bahadoran Z., Mirmiran P., Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: A review. J. Diabetes Metab. Disord. 2013;12:43. doi: 10.1186/2251-6581-12-43.
    1. Hanhineva K., Törrönen R., Bondia-Pons I., Pekkinen J., Kolehmainen M., Mykkänen H., Poutanen K. Impact of Dietary Polyphenols on Carbohydrate Metabolism. Int. J. Mol. Sci. 2010;11:1365–1402. doi: 10.3390/ijms11041365.
    1. Gonzalez M., Zarzuelo A., Gamez M.J., Utrilla M.P., Jimenez J., Osuna I. Hypoglycemic activity of olive leaf. Planta Med. 1992;58:513–515. doi: 10.1055/s-2006-961538.
    1. Hashmi M.A., Khan A., Hanif M., Farooq U., Perveen S. Traditional Uses, Phytochemistry, and Pharmacology of Olea europaea (Olive) Evid. Based Complement. Altern. Med. 2015;2015:541591. doi: 10.1155/2015/541591.
    1. Jemai H., El Feki A., Sayadi S. Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. J. Agric. Food Chem. 2009;57:8798–8804. doi: 10.1021/jf901280r.
    1. Ismail I., Ghanema A., Sadek K.M. Olive leaves extract restored the antioxidant perturbations in red blood cells hemolysate in Streptozotocin induced diabetic rats. Int. J. Med. Biol. Sci. 2012;6:181–187.
    1. Murotomi K., Umeno A., Yasunaga M., Shichiri M., Ishida N., Koike T., Matsuo T., Abe H., Yoshida Y., Nakajima Y. Oleuropein-Rich Diet Attenuates Hyperglycemia and Impaired Glucose Tolerance in Type 2 Diabetes Model Mouse. J. Agric. Food Chem. 2015;63:6715–6722. doi: 10.1021/acs.jafc.5b00556.
    1. Al-Azzawie H.F., Alhamdani M.-S.S. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci. 2006;78:1371–1377. doi: 10.1016/j.lfs.2005.07.029.
    1. Ibrahim A., Al Jamal A.R. Effects of olive oil on lipid profiles and blood glucose in type 2 diabetic patients. Int. J. Diabetes Metab. 2011;19:19–22.
    1. Xu N., Zhang L., Dong J., Zhang X., Chen Y.G., Bao B., Liu J. Low-dose diet supplement of a natural flavonoid, luteolin, ameliorates diet-induced obesity and insulin resistance in mice. Mol. Nutr. Food Res. 2014;58:1258–1268. doi: 10.1002/mnfr.201300830.
    1. Ohno M., Shibata C., Kishikawa T., Yoshikawa T., Takata A., Kojima K., Akanuma M., Kang Y.J., Yoshida H., Otsuka M., et al. The flavonoid apigenin improves glucose tolerance through inhibition of microRNA maturation in miRNA103 transgenic mice. Sci. Rep. 2013;3:2553. doi: 10.1038/srep02553.
    1. Sattanathan K., Dhanapal C.K., Umarani R., Manavalan R. Beneficial health effects of rutin supplementation in patients with diabetes mellitus. J. Appl. Pharm. Sci. 2011;1:227–231.
    1. Kim J.S., Kwon C.S., Son K.H. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Biosci. Biotechnol. Biochem. 2000;64:2458–2461. doi: 10.1271/bbb.64.2458.
    1. Adefegha S.A., Oboh G. In vitro inhibition activity of polyphenol-rich extracts from Syzygium aromaticum (L.) Merr. & Perry (Clove) buds against carbohydrate hydrolyzing enzymes linked to type 2 diabetes and Fe(2+)-induced lipid peroxidation in rat pancreas. Asian Pac. J. Trop. Biomed. 2012;2:774–781. doi: 10.1016/S2221-1691(12)60228-7.
    1. Xiao J., Ni X., Kai G., Chen X. A review on structure-activity relationship of dietary polyphenols inhibiting alpha-amylase. Crit. Rev. Food Sci. Nutr. 2013;53:497–506. doi: 10.1080/10408398.2010.548108.
    1. Yamamoto N., Ueda-Wakagi M., Sato T., Kawasaki K., Sawada K., Kawabata K., Akagawa M., Ashida H. Measurement of Glucose Uptake in Cultured Cells. Curr. Protoc. Pharmacol. 2015;14:1–22. doi: 10.1002/0471141755.ph1214s71.
    1. Domenech M., Roman P., Lapetra J., Garcia de la Corte F.J., Sala-Vila A., de la Torre R., Corella D., Salas-Salvado J., Ruiz-Gutierrez V., Lamuela-Raventos R.M., et al. Mediterranean diet reduces 24-hour ambulatory blood pressure, blood glucose, and lipids: One-year randomized, clinical trial. Hypertension. 2014;64:69–76. doi: 10.1161/HYPERTENSIONAHA.113.03353.
    1. Kaseb F., Biregani A.N. Effects of Olive Oil and Grape Seed Oil on Lipid Profile and Blood Pressure in Patients with Hyperlipidemia: A Randomized Clinical Trial. Food Nutr. Sci. 2016;7:682–688. doi: 10.4236/fns.2016.78069.
    1. Romero M., Toral M., Gomez-Guzman M., Jimenez R., Galindo P., Sanchez M., Olivares M., Galvez J., Duarte J. Antihypertensive effects of oleuropein-enriched olive leaf extract in spontaneously hypertensive rats. Food Funct. 2016;7:584–593. doi: 10.1039/C5FO01101A.
    1. Khayyal M.T., el-Ghazaly M.A., Abdallah D.M., Nassar N.N., Okpanyi S.N., Kreuter M.H. Blood pressure lowering effect of an olive leaf extract (Olea europaea) in L-NAME induced hypertension in rats. Arzneimittelforschung. 2002;52:797–802. doi: 10.1055/s-0031-1299970.
    1. Visioli F., Bellosta S., Galli C. Oleuropein, the bitter principle of olives, enhances nitric oxide production by mouse macrophages. Life Sci. 1998;62:541–546. doi: 10.1016/S0024-3205(97)01150-8.
    1. Medina-Remon A., Estruch R., Tresserra-Rimbau A., Vallverdu-Queralt A., Lamuela-Raventos R.M. The effect of polyphenol consumption on blood pressure. Mini Rev. Med. Chem. 2013;13:1137–1149. doi: 10.2174/1389557511313080002.
    1. Hansen K., Adsersen A., Christensen S.B., Jensen S.R., Nyman U., Smitt U.W. Isolation of an angiotensin converting enzyme (ACE) inhibitor from Olea europaea and Olea lancea. Phytomedicine. 1996;2:319–325. doi: 10.1016/S0944-7113(96)80076-6.
    1. Scheffler A., Rauwald H.W., Kampa B., Mannb U., Mohr F.W., Dhein S. Olea europaea leaf extract exerts L-type Ca2+ channel antagonistic effects. J. Ethnopharmacol. 2008;120:233–240. doi: 10.1016/j.jep.2008.08.018.
    1. De Bock M., Thorstensen E.B., Derraik J.G., Henderson H.V., Hofman P.L., Cutfield W.S. Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Mol. Nutr. Food Res. 2013;57:2079–2085. doi: 10.1002/mnfr.201200795.
    1. Ruotolo G., Howard B.V. Dyslipidemia of the metabolic syndrome. Curr. Cardiol. Rep. 2002;4:494–500. doi: 10.1007/s11886-002-0113-6.
    1. Siri-Tarino P.W., Chiu S., Bergeron N., Krauss R.M. Saturated Fats Versus Polyunsaturated Fats Versus Carbohydrates for Cardiovascular Disease Prevention and Treatment. Ann. Rev. Nutr. 2015;35:517–543. doi: 10.1146/annurev-nutr-071714-034449.
    1. Estruch R., Martínez-González M.A., Corella D., Salas-Salvadó J., Ruíz-Gutiérrez V., Covas M.I., Fiol M., Gómez-Gracia E., López-Sabater M.C., Vinyoles E., et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: A randomized trial. Ann. Intern. Med. 2006;145 doi: 10.7326/0003-4819-145-1-200607040-00004.
    1. Ali Azeemi T., Asif A., Niazi M. Effect of Olive Leaves Extract on Lipid Profile, Glucose and Feed Intake of Japanese Quail. Turk. J. Agric. Food Sci. Technol. 2015;3:874–876.
    1. Olmez E., Vural K., Gok S., Ozturk Z., Kayalar H., Ayhan S., Var A. Olive Leaf Extract Improves the Atherogenic Lipid Profile in Rats Fed a High Cholesterol Diet. Phytother. Res. 2015;29:1652–1657. doi: 10.1002/ptr.5445.
    1. Parsaei S., Amini Z., Houshmand M. Effects of Olive Leaf on Blood Metabolites and Humoral Immunity Response of Broiler Chickens. Int. J. Adv. Biol. Biomed. Res. 2014;2:741–751.
    1. Ghosian Moghaddam M., Masomi Y., Razavian M. The effect of oral consumption of olive leaves on serum glucose level and lipid profile of diabetic rats. J. Basic Clin. Pathophysiol. 2013;1:39–44.
    1. Jemai H., Bouaziz M., Fki I., El Feki A., Sayadi S. Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chem. Biol. Interact. 2008;176:88–98. doi: 10.1016/j.cbi.2008.08.014.
    1. Buchholz T., Melzig M.F. Polyphenolic Compounds as Pancreatic Lipase Inhibitors. Planta Med. 2015;81:771–783. doi: 10.1055/s-0035-1546173.
    1. Esterbauer H., Wag G., Puhl H. Lipid peroxidation and its role in atherosclerosis. Br. Med. Bull. 1993;49:566–576. doi: 10.1093/oxfordjournals.bmb.a072631.
    1. Holvoet P., Lee D.H., Steffes M., Gross M., Jacobs D.R., Jr. Association between circulating oxidized low-density lipoprotein and incidence of the metabolic syndrome. JAMA. 2008;299:2287–2293. doi: 10.1001/jama.299.19.2287.
    1. Castañer O., Covas M.-I., Khymenets O., Nyyssonen K., Konstantinidou V., Zunft H.-F., de la Torre R., Muñoz-Aguayo D., Vila J., Fitó M. Protection of LDL from oxidation by olive oil polyphenols is associated with a downregulation of CD40-ligand expression and its downstream products in vivo in humans. Am. J. Clin. Nutr. 2012;95:1238–1244. doi: 10.3945/ajcn.111.029207.
    1. Zou X., Feng Z., Li Y., Wang Y., Wertz K., Weber P., Fu Y., Liu J. Stimulation of GSH synthesis to prevent oxidative stress-induced apoptosis by hydroxytyrosol in human retinal pigment epithelial cells: activation of Nrf2 and JNK-p62/SQSTM1 pathways. J. Nutr. Biochem. 2012;23:994–1006. doi: 10.1016/j.jnutbio.2011.05.006.
    1. Crespo M.C., Tomé-Carneiro J., Burgos-Ramos E., Loria Kohen V., Espinosa M.I., Herranz J., Visioli F. One-week administration of hydroxytyrosol to humans does not activate Phase II enzymes. Pharmacol. Res. 2015;95–96:132–137. doi: 10.1016/j.phrs.2015.03.018.
    1. Lopez-Huertas E., Fonolla J. Hydroxytyrosol supplementation increases vitamin C levels in vivo. A human volunteer trial. Redox Biol. 2017;11:384–389. doi: 10.1016/j.redox.2016.12.014.
    1. Scaccini C., Nardini M., D’Aquino M., Gentili V., Di Felice M., Tomassi G. Effect of dietary oils on lipid peroxidation and on antioxidant parameters of rat plasma and lipoprotein fractions. J. Lipid Res. 1992;33:627–633.
    1. Coni E., Di Benedetto R., Di Pasquale M., Masella R., Modesti D., Mattei R., Carlini E.A. Protective effect of oleuropein, an olive oil biophenol, on low density lipoprotein oxidizability in rabbits. Lipids. 2000;35:45–54. doi: 10.1007/s11745-000-0493-2.
    1. Visioli F., Galli C. Oleuropein protects low density lipoprotein from oxidation. Life Sci. 1994;55:1965–1971. doi: 10.1016/0024-3205(94)00529-X.
    1. Visioli F., Bellomo G., Montedoro G., Galli C. Low density lipoprotein oxidation is inhibited in vitro by olive oil constituents. Atherosclerosis. 1994;117:25–32. doi: 10.1016/0021-9150(95)05546-9.
    1. Piroddi M., Albini A., Fabiani R., Giovannelli L., Luceri C., Natella F., Rosignoli P., Rossi T., Taticchi A., Servili M., et al. Nutrigenomics of extra-virgin olive oil: A review. Biofactors. 2017;43:17–41. doi: 10.1002/biof.1318.
    1. Estruch R., Ros E., Salas-Salvadó J., Covas M.-I., Corella D., Arós F., Gómez-Gracia E., Ruiz-Gutiérrez V., Fiol M., Lapetra J., et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. N. Engl. J. Med. 2013;368:1279–1290. doi: 10.1056/NEJMoa1200303.
    1. Del Boccio P., Di Deo A., De Curtis A., Celli N., Iacoviello L., Rotilio D. Liquid chromatography–tandem mass spectrometry analysis of oleuropein and its metabolite hydroxytyrosol in rat plasma and urine after oral administration. J. Chromatogr. B. 2003;785:47–56. doi: 10.1016/S1570-0232(02)00853-X.
    1. Vissers M.N., Zock P.L., Roodenburg A.J., Leenen R., Katan M.B. Olive oil phenols are absorbed in humans. J. Nutr. 2002;132:409–417.
    1. Konstantinidou V., Covas M.I., Sola R., Fito M. Up-to date knowledge on the in vivo transcriptomic effect of the Mediterranean diet in humans. Mol. Nutr. Food Res. 2013;57:772–783. doi: 10.1002/mnfr.201200613.

Source: PubMed

3
订阅