West Nile Virus Epidemic in Germany Triggered by Epizootic Emergence, 2019

Ute Ziegler, Pauline Dianne Santos, Martin H Groschup, Carolin Hattendorf, Martin Eiden, Dirk Höper, Philip Eisermann, Markus Keller, Friederike Michel, Robert Klopfleisch, Kerstin Müller, Doreen Werner, Helge Kampen, Martin Beer, Christina Frank, Raskit Lachmann, Birke Andrea Tews, Claudia Wylezich, Monika Rinder, Lars Lachmann, Thomas Grünewald, Claudia A Szentiks, Michael Sieg, Jonas Schmidt-Chanasit, Daniel Cadar, Renke Lühken, Ute Ziegler, Pauline Dianne Santos, Martin H Groschup, Carolin Hattendorf, Martin Eiden, Dirk Höper, Philip Eisermann, Markus Keller, Friederike Michel, Robert Klopfleisch, Kerstin Müller, Doreen Werner, Helge Kampen, Martin Beer, Christina Frank, Raskit Lachmann, Birke Andrea Tews, Claudia Wylezich, Monika Rinder, Lars Lachmann, Thomas Grünewald, Claudia A Szentiks, Michael Sieg, Jonas Schmidt-Chanasit, Daniel Cadar, Renke Lühken

Abstract

One year after the first autochthonous transmission of West Nile virus (WNV) to birds and horses in Germany, an epizootic emergence of WNV was again observed in 2019. The number of infected birds and horses was considerably higher compared to 2018 (12 birds, two horses), resulting in the observation of the first WNV epidemy in Germany: 76 cases in birds, 36 in horses and five confirmed mosquito-borne, autochthonous human cases. We demonstrated that Germany experienced several WNV introduction events and that strains of a distinct group (Eastern German WNV clade), which was introduced to Germany as a single introduction event, dominated mosquito, birds, horse and human-related virus variants in 2018 and 2019. Virus strains in this clade are characterized by a specific-Lys2114Arg mutation, which might lead to an increase in viral fitness. Extraordinary high temperatures in 2018/2019 allowed a low extrinsic incubation period (EIP), which drove the epizootic emergence and, in the end, most likely triggered the 2019 epidemic. Spatiotemporal EIP values correlated with the geographical WNV incidence. This study highlights the risk of a further spread in Germany in the next years with additional human WNV infections. Thus, surveillance of birds is essential to provide an early epidemic warning and thus, initiate targeted control measures.

Keywords: Germany; West Nile virus; bird; epidemic; epizooty; horses; human; mosquitoes; transmission risk; zoonoses.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Spatial risk of West Nile virus (WNV) transmission in Germany. Average extrinsic incubation period between 15th July to 14th August 2018/2019 and distribution of WNV-positive birds, horses, humans and mosquitoes.
Figure 2
Figure 2
Bayesian maximum clade credibility (MCC) tree; (a) representing the time scale phylogeny; (b) effective population size; and (c) evolutionary rate of the European and German WNV lineage 2. The colored branches of MCC trees represent the most probable geographic location of their descendant nodes (see color codes); (a) the main clades are indicated to the right of the tree (SEEC, South Eastern European clade; CEC, Central and Eastern European clade), including the newly proposed German clade (EGC, Eastern German clade). Time is reported in the axis below the tree and represents the year before the last sampling time (2019). The German WNV strains sequenced in this study are highlighted. The estimated tMRCA of German WNV strains of EGC clade is shown with 95% posterior time intervals in parentheses. Bayesian posterior probabilities (≥90%) and 1000 parallel maximum likelihood bootstrap replicates (≥70%) are indicated at the nodes (asterisks); (b) temporal variation in the effective population size of the European WNV lineage 2; (b1) and EGC; (b2) estimated using the coalescent Gaussian Markov Random field (GMRF) Bayesian Skyride model of polyprotein sequences. The Bayesian Skyride plot represents temporal variation in the virus effective population size (Ne) through time. The blue line represents the median Ne estimate and the shaded area corresponds to the 95% high-probability density (HDP) intervals; (c) evolutionary rate estimates with 95% credible intervals for the distribution of evolutionary rates observed for the whole European WNV lineage 2 and for WNV from the 2018–2019 German epidemic.
Figure 3
Figure 3
A median-joining haplotype network constructed from complete WNV NS5 gene alignment of the Central European WNV clade (CEC). Each colored vertex represents a sampled viral haplotype, with different colors indicating the different country of origin. The size of each vertex is relative to the number of sampled viral strains and the dashes on branches show the number of mutations between nodes. The Eastern German clade (EGC) is highlighted.
Figure 4
Figure 4
Temporally framed snapshots of the dispersal patterns (2018–2019) among regions in Germany for the Eastern German WNV clade. Lines between locations represent branches in the Bayesian maximum clade credibility (MCC) tree along which the relevant location transition occurs. Circle diameters are proportional to the square root of the number of MCC branches maintaining a particular location state at each time point.
Figure 5
Figure 5
Calculated migration pattern of WNV between German locations based on Bayes factor test for significant non-zero rates. The arrows indicate the origin and the direction of migration between locations, while the colors indicate the strength of the connections.
Figure 6
Figure 6
Spatial dynamics of the European clade of WNV lineage 2 including the origin of the German WNV reconstructed from the Bayesian maximum clade credibility (MCC) tree, a flexible demographic prior with location states and a Bayesian Stochastic Search Variable Selection (BSSVS); (a) the directed lines between locations connect the sources and target countries. Circles represent discrete geographical locations of viral strains and represent branches in the MCC tree along with where the relevant location transition occurs. All introductions for Germany are shown. Circle diameters of locations are proportional to square root of the number of MCC branches maintaining a particular location state at each time-point. Discrete locations are geographic coordinates for each European country; (b) the directed lines between the source of viral strains (Czech Republic and Austria) and target locations in Germany. Location circle diameters are proportional to square root of the number of MCC branches maintaining a particular location state at each time-point; (c) migration pattern of WNV between Czech Republic–Germany and Austria–Germany based on Bayes factor (BF) test for significant non-zero rates. Viral migration patterns are indicated between the different regions of Germany and neighboring countries and are proportional to the strength of the transmission rate. The color of the connections indicates the origin and the direction of migration and are proportional with the strength of connections. Only well supported paths between locations are shown.
Figure 7
Figure 7
Schematic representation of the WNV genome and the positions of amino acid mutations. The position of the unique amino acid mutation of the Eastern German clade (colored in red/blue) in the NS3 gene is highlighted. The specific non-synonymous amino acid mutations for the CEC are shown in black, while the mutation in the NS5 specific for the subclade including the Eastern German group, one Austrian, one Czech and two German strains is presented in green.

References

    1. Kramer L.D., Styer L.M., Ebel G.D. A global perspective on the epidemiology of West Nile virus. Annu. Rev. Entomol. 2008;53:61–81. doi: 10.1146/annurev.ento.53.103106.093258.
    1. Yeung M.W., Shing E., Nelder M., Sander B. Epidemiologic and clinical parameters of West Nile virus infections in humans: A scoping review. BMC Infect. Dis. 2017;17:609. doi: 10.1186/s12879-017-2637-9.
    1. Zou S., Foster G.A., Dodd R.Y., Petersen L.R., Stramer S.L. West Nile fever characteristics among viremic persons identified through blood donor screening. J. Infect. Dis. 2010;202:1354–1361. doi: 10.1086/656602.
    1. Mostashari F., Bunning M.L., Kitsutani P.T., Singer D.A., Nash D., Cooper M.J., Katz N., Liljebjelke K.A., Biggerstaff B.J., Fine A.D., et al. Epidemic West Nile encephalitis, New York, 1999: Results of a household-based seroepidemiological survey. Lancet. 2001;358:261–264. doi: 10.1016/S0140-6736(01)05480-0.
    1. Centers for Disease Control and Prevention West Nile Virus Disease Cases and Deaths Reported to CDC by Year and Clinical Presentation, 1999–2018. [(accessed on 1 April 2020)];2019 Available online: .
    1. Petersen L.R. Epidemiology of West Nile virus in the United States: Implications for arbovirology and public health. J. Med. Entomol. 2019;56:1456–1462. doi: 10.1093/jme/tjz085.
    1. European Centre for Disease Prevention and Control Historical Data by Year—West Nile Fever Seasonal Surveillance. [(accessed on 1 April 2020)];2019 Available online: .
    1. Börstler J., Engel D., Petersen M., Poggensee C., Jansen S., Schmidt-Chanasit J., Lühken R. Surveillance of maternal antibodies against West Nile virus in chicken eggs in South-West Germany. Trop. Med. Int. Health. 2016;21:687–690. doi: 10.1111/tmi.12676.
    1. Michel F., Sieg M., Fischer D., Keller M., Eiden M., Reuschel M., Schmidt V., Schwehn R., Rinder M., Urbaniak S., et al. Evidence for West Nile virus and Usutu virus infections in wild and resident birds in Germany, 2017 and 2018. Viruses. 2019;11:674. doi: 10.3390/v11070674.
    1. Scheuch D., Schäfer M., Eiden M., Heym E., Ziegler U., Walther D., Schmidt-Chanasit J., Keller M., Groschup M., Kampen H. Detection of Usutu, Sindbis, and Batai Viruses in mosquitoes (Diptera: Culicidae) collected in Germany, 2011–2016. Viruses. 2018;10:389. doi: 10.3390/v10070389.
    1. Michel F., Fischer D., Eiden M., Fast C., Reuschel M., Müller K., Rinder M., Urbaniak S., Brandes F., Schwehn R., et al. West Nile virus and Usutu virus monitoring of wild birds in Germany. Int. J. Environ. Res. Public. Health. 2018;15:171. doi: 10.3390/ijerph15010171.
    1. Ziegler U., Angenvoort J., Klaus C., Nagel-Kohl U., Sauerwald C., Thalheim S., Horner S., Braun B., Kenklies S., Tyczka J., et al. Use of competition ELISA for monitoring of West Nile virus infections in horses in Germany. Int. J. Environ. Res. Public. Health. 2013;10:3112–3120. doi: 10.3390/ijerph10083112.
    1. Ziegler U., Lühken R., Keller M., Cadar D., van der Grinten E., Michel F., Albrecht K., Eiden M., Rinder M., Lachmann L., et al. West Nile virus epizootic in Germany, 2018. Antiviral Res. 2019;162:39–43. doi: 10.1016/j.antiviral.2018.12.005.
    1. Jansen S., Heitmann A., Lühken R., Leggewie M., Helms M., Badusche M., Rossini G., Schmidt-Chanasit J., Tannich E. Culex torrentium: A potent vector for the transmission of West Nile virus in Central Europe. Viruses. 2019;11:492. doi: 10.3390/v11060492.
    1. Becker N., Jöst H., Ziegler U., Eiden M., Höper D., Emmerich P., Fichet-Calvet E., Ehichioya D.U., Czajka C., Gabriel M., et al. Epizootic emergence of Usutu virus in wild and captive birds in Germany. PLoS ONE. 2012;7:e32604. doi: 10.1371/annotation/6841c4e1-58e6-4412-9b71-bd6bc8bbe549.
    1. Eiden M., Vina-Rodriguez A., Hoffmann B., Ziegler U., Groschup M.H. Two new real-time quantitative reverse transcription polymerase chain reaction assays with unique target sites for the specific and sensitive detection of lineages 1 and 2 West Nile Virus Strains. J. Vet. Diagn. Investig. 2010;22:748–753. doi: 10.1177/104063871002200515.
    1. Jöst H., Bialonski A., Maus D., Sambri V., Eiden M., Groschup M.H., Günther S., Becker N., Schmidt-Chanasit J. Isolation of Usutu virus in Germany. Am. J. Trop. Med. Hyg. 2011;85:551–553. doi: 10.4269/ajtmh.2011.11-0248.
    1. Becker N., Petric D., Zgomba M., Boase C., Madon M., Dahl C., Kaiser A. Mosquitoes and Their Control. 2nd ed. Springer; Berlin/Heidelberg, Germany: 2010.
    1. Kampen H., Holicki C.M., Ziegler U., Groschup M., Tews B.A., Werner D. West Nile virus mosquito vectors (Diptera: Culicidae) in Germany. Viruses. 2020 (in review)
    1. Reisen W.K., Niu T., Gaff H.D., Barker C.M., Le Menach A., Hartley D.M. Effects of temperature on emergence and seasonality of West Nile virus in California. Am. J. Trop. Med. Hyg. 2012;86:884–894.
    1. Cornes R.C., van der Schrier G., van den Besselaar E.J.M., Jones P.D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 2018;123:9391–9409. doi: 10.1029/2017JD028200.
    1. R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2019.
    1. Grolemund G., Wickham H. Dates and times made easy with lubridate. J. Stat. Softw. 2011;40:1–25. doi: 10.18637/jss.v040.i03.
    1. Hijmans R.J. [(accessed on 1 April 2020)];Raster: Geographic Data Analysis and Modeling. 2019 R Package Version 2.9-5. Available online: .
    1. Wylezich C., Papa A., Beer M., Höper D. A Versatile sample processing workflow for metagenomic pathogen detection. Sci. Rep. 2018;8:13108. doi: 10.1038/s41598-018-31496-1.
    1. Martin D., Rybicki E. RDP: Detection of recombination amongst aligned sequences. Bioinformatics. 2000;16:562–563. doi: 10.1093/bioinformatics/16.6.562.
    1. Suchard M.A., Lemey P., Baele G., Ayres D.L., Drummond A.J., Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4:vey016. doi: 10.1093/ve/vey016.
    1. Darriba D., Taboada G.L., Doallo R., Posada D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods. 2012;9:772. doi: 10.1038/nmeth.2109.
    1. Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010.
    1. Rambaut A., Lam T.T., Max Carvalho L., Pybus O.G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen) Virus Evol. 2016;2:vew007. doi: 10.1093/ve/vew007.
    1. Drummond A.J., Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007;7:214. doi: 10.1186/1471-2148-7-214.
    1. Leigh J.W., Bryant D. popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015;6:1110–1116. doi: 10.1111/2041-210X.12410.
    1. Koraka P., Barzon L., Martina B.E. West Nile Virus Infections in (European) Birds. J Neuroinfect Dis. 2016;7:3. doi: 10.4172/2314-7326.1000226.
    1. Bakonyi T., Ferenczi E., Erdélyi K., Kutasi O., Csörgő T., Seidel B., Weissenböck H., Brugger K., Bán E., Nowotny N. Explosive spread of a neuroinvasive lineage 2 West Nile virus in Central Europe, 2008/2009. Vet. Microbiol. 2013;165:61–70. doi: 10.1016/j.vetmic.2013.03.005.
    1. Rudolf I., Betášová L., Blažejová H., Venclíková K., Straková P., Šebesta O., Mendel J., Bakonyi T., Schaffner F., Nowotny N., et al. West Nile virus in overwintering mosquitoes, central Europe. Parasit. Vectors. 2017;10:452. doi: 10.1186/s13071-017-2399-7.
    1. Heym E.C., Kampen H., Krone O., Schäfer M., Werner D. Molecular detection of vector-borne pathogens from mosquitoes collected in two zoological gardens in Germany. Parasitol. Res. 2019;118:2097–2105. doi: 10.1007/s00436-019-06327-5.
    1. Ziegler U., Fischer D., Eiden M., Reuschel M., Rinder M., Müller K., Schwehn R., Schmidt V., Groschup M.H., Keller M. Sindbis virus—A wild bird associated zoonotic arbovirus circulates in Germany. Vet. Microbiol. 2019;239:108453. doi: 10.1016/j.vetmic.2019.108453.
    1. Añez G., Grinev A., Chancey C., Ball C., Akolkar N., Land K.J., Winkelman V., Stramer S.L., Kramer L.D., Rios M. Evolutionary dynamics of West Nile virus in the United States, 1999–2011: Phylogeny, selection pressure and evolutionary time-scale analysis. PLoS Negl. Trop. Dis. 2013;7:e2245. doi: 10.1371/journal.pntd.0002245.
    1. Di Giallonardo F., Geoghegan J.L., Docherty D.E., McLean R.G., Zody M.C., Qu J., Yang X., Birren B.W., Malboeuf C.M., Newman R.M., et al. Fluid spatial dynamics of West Nile virus in the United States: Rapid spread in a permissive host environment. J. Virol. 2016;90:862–872. doi: 10.1128/JVI.02305-15.
    1. Engel D., Jöst H., Wink M., Börstler J., Bosch S., Garigliany M.-M., Jöst A., Czajka C., Lühken R., Ziegler U., et al. Reconstruction of the evolutionary history and dispersal of Usutu virus, a neglected emerging arbovirus in Europe and Africa. mBio. 2016;7:e01938-15. doi: 10.1128/mBio.01938-15.
    1. Holmes E.C. Patterns of intra- and interhost nonsynonymous variation reveal strong purifying selection in dengue virus. J. Virol. 2003;77:11296–11298. doi: 10.1128/JVI.77.20.11296-11298.2003.
    1. Armstrong P.M., Vossbrinck C.R., Andreadis T.G., Anderson J.F., Pesko K.N., Newman R.M., Lennon N.J., Birren B.W., Ebel G.D., Henn M.R. Molecular evolution of West Nile virus in a northern temperate region: Connecticut, USA 1999–2008. Virology. 2011;417:203–210. doi: 10.1016/j.virol.2011.06.006.
    1. Brault A.C., Huang C.Y.-H., Langevin S.A., Kinney R.M., Bowen R.A., Ramey W.N., Panella N.A., Holmes E.C., Powers A.M., Miller B.R. A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat. Genet. 2007;39:1162–1166. doi: 10.1038/ng2097.

Source: PubMed

3
订阅