Use of Ultrasmall Core-Shell Fluorescent Silica Nanoparticles for Image-Guided Sentinel Lymph Node Biopsy in Head and Neck Melanoma: A Nonrandomized Clinical Trial

Daniella Karassawa Zanoni, Hilda E Stambuk, Brian Madajewski, Pablo H Montero, Danielli Matsuura, Klaus J Busam, Kai Ma, Melik Z Turker, Sonia Sequeira, Mithat Gonen, Pat Zanzonico, Ulrich Wiesner, Michelle S Bradbury, Snehal G Patel, Daniella Karassawa Zanoni, Hilda E Stambuk, Brian Madajewski, Pablo H Montero, Danielli Matsuura, Klaus J Busam, Kai Ma, Melik Z Turker, Sonia Sequeira, Mithat Gonen, Pat Zanzonico, Ulrich Wiesner, Michelle S Bradbury, Snehal G Patel

Abstract

Importance: Sentinel lymph node (SLN) mapping agents approved for current surgical practice lack sufficient brightness and target specificity for high-contrast, sensitive nodal visualization.

Objective: To evaluate whether an ultrasmall, molecularly targeted core-shell silica nanoparticle (Cornell prime dots) can safely and reliably identify optically avid SLNs in head and neck melanoma during fluorescence-guided biopsy.

Design, setting, and participants: This nonrandomized clinical trial enrolled patients aged 18 years or older with histologically confirmed melanoma in whom SLN mapping was indicated. Exclusion criteria included known pregnancy, breast-feeding, or medical illness unrelated to the tumor. The trial was conducted between February 2015 and March 2018 at Memorial Sloan Kettering Cancer Center, with postoperative follow-up of 2 years. Data analysis was conducted from February 2015 to March 2018.

Interventions: Patients received standard-of-care technetium Tc 99m sulfur colloid followed by a microdose administration of integrin-targeting, dye-encapsulated nanoparticles, surface modified with polyethylene glycol chains and cyclic arginine-glycine-aspartic acid-tyrosine peptides (cRGDY-PEG-Cy5.5-nanoparticles) intradermally.

Main outcomes and measures: The primary end points were safety, procedural feasibility, lowest particle dose and volume for maximizing nodal fluorescence signal, and proportion of nodes identified by technetium Tc 99m sulfur colloid that were optically visualized by cRGDY-PEG-Cy5.5-nanoparticles. Secondary end points included proportion of patients in whom the surgical approach or extent of dissection was altered because of nodal visualization.

Results: Of 24 consecutive patients enrolled (median [interquartile range] age, 64 [51-71] years), 18 (75%) were men. In 24 surgical procedures, 40 SLNs were excised. Preoperative localization of SLNs with technetium Tc 99m sulfur colloid was followed by particle dose-escalation studies, yielding optimized doses and volumes of 2 nmol and 0.4 mL, respectively, and maximum SLN signal-to-background ratios of 40. No adverse events were observed. The concordance rate of evaluable SLNs by technetium Tc 99m sulfur colloid and cRGDY-PEG-Cy5.5-nanoparticles was 90% (95% CI, 74%-98%), 5 of which were metastatic. Ultrabright nanoparticle fluorescence enabled high-sensitivity SLN visualization (including difficult-to-access anatomic sites), deep tissue imaging, and, in some instances, detection through intact skin, thereby facilitating intraoperative identification without extensive dissection of adjacent normal tissue or nerves.

Conclusions and relevance: This study found that nanoparticle-based fluorescence-guided SLN biopsy in head and neck melanoma was feasible and safe. This technology holds promise for improving lymphatic mapping and SLN biopsy procedures, while potentially mitigating procedural risks. This study serves as a first step toward developing new multimodal approaches for perioperative care.

Trial registration: ClinicalTrials.gov Identifier: NCT02106598.

Conflict of interest statement

Conflict of Interest Disclosures: Drs Bradbury, Wiesner, Ma, and Turker reported holding interest in and Drs Wiesner and Bradbury reported being company and/or scientific advisory board members of Elucida Oncology, Inc, which has licensed intellectual property from Memorial Sloan Kettering Cancer Center and Cornell on nanoparticles and their application in oncology. Dr Bradbury reported having a patent for fluorescent silica-based nanoparticles licensed to Elucida Oncology. Dr Wiesner reported holding multiple patents for intellectual property on particles. Dr Patel reported being a coinventor of licensed intellectual property to Elucida Oncology and holding equity in and having a patent licensed by Summit Biomedical Imaging. No other disclosures were reported.

Figures

Figure 1.. Nanoparticle-Aided Fluorescence Detection of a…
Figure 1.. Nanoparticle-Aided Fluorescence Detection of a Metastatic Intraparotid Sentinel Lymph Nodes (SLN)
Intradermal injection of a male patient in his 60s with integrin-targeting, dye-encapsulated nanoparticles, surface modified with polyethylene glycol chains and cyclic arginine-glycine–aspartic acid–tyrosine peptides near a scalp melanoma (A), shown in both composite (green signal) and adjacent fluorescence (white signal) displays. Progressive increase in fluorescence signal, seen as a blush within the nodal bed (B-E) on both composite and fluorescence displays, corresponds with an intraparotid SLN approximately 1.5 to 2 cm deep. F, Fluorescence signal within the ex vivo SLN.
Figure 2.. Real-Time Transcutaneous Visualization of a…
Figure 2.. Real-Time Transcutaneous Visualization of a Postauricular Sentinel Lymph Node (SLN) Using Nanoparticles
A male patient in his 50s with a scalp melanoma was injected peritumorally with integrin-targeting, dye-encapsulated nanoparticles, surface modified with polyethylene glycol chains and cyclic arginine-glycine–aspartic acid–tyrosine peptides (green signal in A). Focal fluorescence was seen through the intact skin overlying a postauricular SLN (B) using the Spectrum camera system (Quest) for real-time optical imaging guidance. Limited extent of surgical dissection (C) and size of the resection cavity (D) relative to the planned area of dissection unaided (ie, marked line in panel C is approximately 3 times larger than that actually drawn on the basis of the particle signal). Images are derived from the intraoperative video (Video).

References

    1. Morton DL, Thompson JF, Cochran AJ, et al. ; MSLT Group . Final trial report of sentinel-node biopsy versus nodal observation in melanoma. N Engl J Med. 2014;370(7):599-609. doi:10.1056/NEJMoa1310460
    1. Rosenthal EL, Warram JM, Bland KI, Zinn KR. The status of contemporary image-guided modalities in oncologic surgery. Ann Surg. 2015;261(1):46-55. doi:10.1097/SLA.0000000000000622
    1. DSouza AV, Lin H, Henderson ER, Samkoe KS, Pogue BW. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J Biomed Opt. 2016;21(8):80901. doi:10.1117/1.JBO.21.8.080901
    1. Chi C, Du Y, Ye J, et al. . Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics. 2014;4(11):1072-1084. doi:10.7150/thno.9899
    1. Bradbury MS, Phillips E, Montero PH, et al. . Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions. Integr Biol (Camb). 2013;5(1):74-86. doi:10.1039/c2ib20174g
    1. Morton DL, Wen DR, Wong JH, et al. . Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg. 1992;127(4):392-399. doi:10.1001/archsurg.1992.01420040034005
    1. Sondak VK, King DW, Zager JS, et al. . Combined analysis of phase III trials evaluating [99mTc]tilmanocept and vital blue dye for identification of sentinel lymph nodes in clinically node-negative cutaneous melanoma. Ann Surg Oncol. 2013;20(2):680-688. doi:10.1245/s10434-012-2612-z
    1. Khafif A, Schneebaum S, Fliss DM, et al. . Lymphoscintigraphy for sentinel node mapping using a hybrid single photon emission CT (SPECT)/CT system in oral cavity squamous cell carcinoma. Head Neck. 2006;28(10):874-879. doi:10.1002/hed.20434
    1. Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U. Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett. 2005;5(1):113-117. doi:10.1021/nl0482478
    1. Ma K, Zhang D, Cong Y, Wiesner U. Elucidating the mechanism of silica nanoparticle PEGylation processes using fluorescence correlation spectroscopies. Chem Mater. 2016;28(5):1537-1545. doi:10.1021/acs.chemmater.6b00030
    1. Ma K, Mendoza C, Hanson M, Werner-Zwanziger U, Zwanziger J, Wiesner U. Control of ultrasmall sub-10 nm ligand-functionalized fluorescent core–shell silica nanoparticle growth in water. Chem Mater. 2015;27(11):4119-4133. doi:10.1021/acs.chemmater.5b01222
    1. Herz E, Ow H, Bonner D, Burns A, Wiesner U. Dye structure–optical property correlations in near-infrared fluorescent core-shell silica nanoparticles. J Mater Chem. 2009;19(35):6341-6347. doi:10.1039/B902286D
    1. Burns AA, Vider J, Ow H, et al. . Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett. 2009;9(1):442-448. doi:10.1021/nl803405h
    1. Larson DR, Ow H, Vishwasrao HD, Heikal AA, Wiesner U, Webb WW. Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores. Chem Mater. 2008;20(8):2677-2684. doi:10.1021/cm7026866
    1. Kohle FFE, Hinckley JA, Wiesner UB. Dye encapsulation in fluorescent core–shell silica nanoparticles as probed by fluorescence correlation spectroscopy. J Phys Chem C Nanomater Interfaces. 2019;123(15):9813-9823. doi:10.1021/acs.jpcc.9b00297
    1. Herz E, Burns A, Bonner D, Wiesner U. Large stokes-shift fluorescent silica nanoparticles with enhanced emission over free dye for single excitation multiplexing. Macromol Rapid Commun. 2009;30(22):1907-1910. doi:10.1002/marc.200900389
    1. Chen F, Ma K, Benezra M, et al. . Cancer-targeting ultrasmall silica nanoparticles for clinical translation: physicochemical structure and biological property correlations. Chem Mater. 2017;29(20):8766-8779. doi:10.1021/acs.chemmater.7b03033
    1. Benezra M, Phillips E, Overholtzer M, et al. . Ultrasmall integrin-targeted silica nanoparticles modulate signaling events and cellular processes in a concentration-dependent manner. Small. 2015;11(14):1721-1732. doi:10.1002/smll.201402331
    1. National Comprehensive Cancer Network. Melanoma: cutaneous, version 1. Published November 5, 2020. Accessed February 10, 2021.
    1. Sanki A, Uren RF, Moncrieff M, et al. . Targeted high-resolution ultrasound is not an effective substitute for sentinel lymph node biopsy in patients with primary cutaneous melanoma. J Clin Oncol. 2009;27(33):5614-5619. doi:10.1200/JCO.2008.21.4882
    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7-30. doi:10.3322/caac.21590
    1. Tseng WH, Martinez SR. Tumor location predicts survival in cutaneous head and neck melanoma. J Surg Res. 2011;167(2):192-198. doi:10.1016/j.jss.2010.10.008
    1. Leiter U, Eigentler TK, Häfner HM, et al. . Sentinel lymph node dissection in head and neck melanoma has prognostic impact on disease-free and overall survival. Ann Surg Oncol. 2015;22(12):4073-4080. doi:10.1245/s10434-015-4439-x
    1. Morton DL, Cochran AJ, Thompson JF, et al. ; Multicenter Selective Lymphadenectomy Trial Group . Sentinel node biopsy for early-stage melanoma: accuracy and morbidity in MSLT-I, an international multicenter trial. Ann Surg. 2005;242(3):302-311. doi:10.1097/01.sla.0000181092.50141.fa
    1. Valsecchi ME, Silbermins D, de Rosa N, Wong SL, Lyman GH. Lymphatic mapping and sentinel lymph node biopsy in patients with melanoma: a meta-analysis. J Clin Oncol. 2011;29(11):1479-1487. doi:10.1200/JCO.2010.33.1884
    1. de Rosa N, Lyman GH, Silbermins D, et al. . Sentinel node biopsy for head and neck melanoma: a systematic review. Otolaryngol Head Neck Surg. 2011;145(3):375-382. doi:10.1177/0194599811408554
    1. Gyorki DE, Boyle JO, Ganly I, et al. . Incidence and location of positive nonsentinel lymph nodes in head and neck melanoma. Eur J Surg Oncol. 2014;40(3):305-310. doi:10.1016/j.ejso.2013.11.017
    1. Puza CJ, Josyula S, Terando AM, et al. . Does the number of sentinel lymph nodes removed affect the false negative rate for head and neck melanoma? J Surg Oncol. 2018;117(7):1584-1588. doi:10.1002/jso.25025
    1. Honda K, Ishiyama K, Suzuki S, Kawasaki Y, Saito H, Horii A. Sentinel lymph node biopsy using preoperative computed tomographic lymphography and intraoperative indocyanine green fluorescence imaging in patients with localized tongue cancer. JAMA Otolaryngol Head Neck Surg. 2019;145(8):735-740. doi:10.1001/jamaoto.2019.1243
    1. Zanzonico P, Heller S. The intraoperative gamma probe: basic principles and choices available. Semin Nucl Med. 2000;30(1):33-48. doi:10.1016/S0001-2998(00)80060-4
    1. Zanzonico PB. Radionuclide imaging. In: Cherry SR, Badawi RD, Qi J, eds. Essentials of In Vivo Biomedical Imaging. 1st ed. CRC Press; 2015:165-224.
    1. Vermeeren L, Valdés Olmos RA, Klop WM, et al. . SPECT/CT for sentinel lymph node mapping in head and neck melanoma. Head Neck. 2011;33(1):1-6. doi:10.1002/hed.21392
    1. Chao C, Wong SL, Edwards MJ, et al. ; Sunbelt Melanoma Trial Group . Sentinel lymph node biopsy for head and neck melanomas. Ann Surg Oncol. 2003;10(1):21-26. doi:10.1245/ASO.2003.06.007
    1. Liu Y, Truini C, Ariyan S. A randomized study comparing the effectiveness of methylene blue dye with lymphazurin blue dye in sentinel lymph node biopsy for the treatment of cutaneous melanoma. Ann Surg Oncol. 2008;15(9):2412-2417. doi:10.1245/s10434-008-9953-7
    1. Cimmino VM, Brown AC, Szocik JF, et al. . Allergic reactions to isosulfan blue during sentinel node biopsy—a common event. Surgery. 2001;130(3):439-442. doi:10.1067/msy.2001.116407
    1. Barthelmes L, Goyal A, Newcombe RG, McNeill F, Mansel RE; NEW START and ALMANAC study groups . Adverse reactions to patent blue V dye—the NEW START and ALMANAC experience. Eur J Surg Oncol. 2010;36(4):399-403. doi:10.1016/j.ejso.2009.10.007
    1. Korn JM, Tellez-Diaz A, Bartz-Kurycki M, Gastman B. Indocyanine green SPY elite-assisted sentinel lymph node biopsy in cutaneous melanoma. Plast Reconstr Surg. 2014;133(4):914-922. doi:10.1097/PRS.0000000000000006
    1. Zeng H-C, Hu J-L, Bai J-W, Zhang G-J. Detection of sentinel lymph nodes with near-infrared imaging in malignancies. Mol Imaging Biol. 2019;21(2):219-227. doi:10.1007/s11307-018-1237-4
    1. Stoffels I, Leyh J, Pöppel T, Schadendorf D, Klode J. Evaluation of a radioactive and fluorescent hybrid tracer for sentinel lymph node biopsy in head and neck malignancies: prospective randomized clinical trial to compare ICG-(99m)Tc-nanocolloid hybrid tracer versus (99m)Tc-nanocolloid. Eur J Nucl Med Mol Imaging. 2015;42(11):1631-1638. doi:10.1007/s00259-015-3093-7
    1. Pameijer CR, Leung A, Neves RI, Zhu J. Indocyanine green and fluorescence lymphangiography for sentinel node identification in patients with melanoma. Am J Surg. 2018;216(3):558-561. doi:10.1016/j.amjsurg.2018.01.009
    1. Sevick-Muraca EM, Sharma R, Rasmussen JC, et al. . Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study. Radiology. 2008;246(3):734-741. doi:10.1148/radiol.2463070962
    1. Crane LM, Themelis G, Arts HJ, et al. . Intraoperative near-infrared fluorescence imaging for sentinel lymph node detection in vulvar cancer: first clinical results. Gynecol Oncol. 2011;120(2):291-295. doi:10.1016/j.ygyno.2010.10.009
    1. Phillips E, Penate-Medina O, Zanzonico PB, et al. . Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med. 2014;6(260):260ra149. doi:10.1126/scitranslmed.3009524
    1. Benezra M, Penate-Medina O, Zanzonico PB, et al. . Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest. 2011;121(7):2768-2780. doi:10.1172/JCI45600
    1. Chen F, Ma K, Zhang L, et al. . Target-or-clear zirconium-89 labeled silica nanoparticles for enhanced cancer-directed uptake in melanoma: a comparison of radiolabeling strategies. Chem Mater. 2017;29(19):8269-8281. doi:10.1021/acs.chemmater.7b02567
    1. Chen F, Madajewski B, Ma K, et al. . Molecular phenotyping and image-guided surgical treatment of melanoma using spectrally distinct ultrasmall core-shell silica nanoparticles. Sci Adv. 2019;5(12):eaax5208. doi:10.1126/sciadv.aax5208
    1. Egger ME, Bower MR, Czyszczon IA, et al. . Comparison of sentinel lymph node micrometastatic tumor burden measurements in melanoma. J Am Coll Surg. 2014;218(4):519-528. doi:10.1016/j.jamcollsurg.2013.12.014
    1. Carlson GW, Murray DR, Thourani V, Hestley A, Cohen C. The definition of the sentinel lymph node in melanoma based on radioactive counts. Ann Surg Oncol. 2002;9(9):929-933. doi:10.1007/BF02557533
    1. Faries MB, Thompson JF, Cochran AJ, et al. . Completion dissection or observation for sentinel-node metastasis in melanoma. N Engl J Med. 2017;376(23):2211-2222. doi:10.1056/NEJMoa1613210

Source: PubMed

3
订阅