Repeat physical activity measurement by accelerometry among colorectal cancer patients--feasibility and minimal number of days of monitoring

Stephanie Skender, Petra Schrotz-King, Jürgen Böhm, Clare Abbenhardt, Biljana Gigic, Jenny Chang-Claude, Erin M Siegel, Karen Steindorf, Cornelia M Ulrich, Stephanie Skender, Petra Schrotz-King, Jürgen Böhm, Clare Abbenhardt, Biljana Gigic, Jenny Chang-Claude, Erin M Siegel, Karen Steindorf, Cornelia M Ulrich

Abstract

Background: Physical activity plays an important role in colorectal cancer and accelerometry is more frequently used to measure physical activity. The aim of this study was to evaluate feasibility of physical activity measurement by accelerometry in colorectal cancer patients under free-living conditions at 6, 12 and 24 months after surgery, to evaluate the appropriate wear time and to compare results to pedometry.

Methods: Colorectal cancer patients (stage 0/I-IV) from the ColoCare study were asked to optionally wear an accelerometer and a pedometer for ten consecutive days 6, 12 and 24 months post-surgery. Participants completed a feedback questionnaire about the accelerometer measurement. The course of moderate-to-vigorous physical activity over the 10 days was investigated. Additionally, daily step counts from accelerometers and pedometers were compared.

Results: In total, there were 317 individual time points, at which 198 participants were asked to wear an accelerometer. Fifty-nine% initially agreed to participate and of these, 83% (n = 156) completed the assessment with at least 4 days of data. Twenty-one% more consents were obtained when participants were asked on a face-to-face basis compared to recruitment by telephone (P = 0.0002). There were no significant differences in time spent in moderate-to-vigorous physical activity between different wear-time lengths of accelerometry. Both Spearman and intraclass correlation coefficients showed strong correlations (0.92-0.99 and 0.84-0.99, respectively) of moderate-to-vigorous physical activity across 3, 4, 7 and 10 days measurement. Step counts measured by accelerometry and pedometry were strongly correlated (ρ = 0.91, P < 0.0001).

Conclusion: This study suggest that accelerometry is a feasible method to assess physical activity in free-living colorectal cancer patients and that three valid days of physical activity measurement are sufficient for an accurate assessment.

Figures

Figure 1
Figure 1
Comparison of physical activity measurement using different wear-time lengths of accelerometry. Minutes in moderate-to-vigorous physical activity within the first 3 and 7 days and the last 3 and 7 days.

References

    1. Meyerhardt JA, Giovannucci EL, Holmes MD, Chan AT, Chan JA, Colditz GA, et al. Physical activity and survival after colorectal cancer diagnosis. J Clin Oncol. 2006;24:3527–3534. doi: 10.1200/JCO.2006.06.0855.
    1. Meyerhardt JA, Giovannucci EL, Ogino S, Kirkner GJ, Chan AT, Willett W, et al. Physical activity and male colorectal cancer survival. Arch Intern Med. 2009;169:2102–2108. doi: 10.1001/archinternmed.2009.412.
    1. Meyerhardt JA, Heseltine D, Niedzwiecki D, Hollis D, Saltz LB, Mayer RJ, et al. Impact of physical activity on cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. J Clin Oncol. 2006;24:3535–3541. doi: 10.1200/JCO.2006.06.0863.
    1. Meyerhardt JA, Ogino S, Kirkner GJ, Chan AT, Wolpin B, Ng K, et al. Interaction of molecular markers and physical activity on mortality in patients with colon cancer. Clin Cancer Res. 2009;15:5931–5936. doi: 10.1158/1078-0432.CCR-09-0496.
    1. Thraen-Borowski KM, Trentham-Dietz A, Edwards DF, Koltyn KF, Colbert LH. Dose-response relationships between physical activity, social participation, and health-related quality of life in colorectal cancer survivors. J Cancer Surviv. 2013;7:369–378. doi: 10.1007/s11764-013-0277-7.
    1. Speck RM, Courneya KS, Masse LC, Duval S, Schmitz KH. An update of controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. J Cancer Surviv. 2010;4:87–100. doi: 10.1007/s11764-009-0110-5.
    1. Rock CL, Doyle C, Demark-Wahnefried W, Meyerhardt J, Courneya KS, Schwartz AL, et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin. 2012;62:243–274. doi: 10.3322/caac.21142.
    1. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100:126–131.
    1. Ferrari P, Friedenreich C, Matthews CE. The role of measurement error in estimating levels of physical activity. Am J Epidemiol. 2007;166:832–840. doi: 10.1093/aje/kwm148.
    1. Neilson HK, Robson PJ, Friedenreich CM, Csizmadi I. Estimating activity energy expenditure: how valid are physical activity questionnaires? Am J Clin Nutr. 2008;87:279–291.
    1. Washburn RA, Jette AM, Janney CA. Using age-neutral physical activity questionnaires in research with the elderly. J Aging Health. 1990;2:341–356. doi: 10.1177/089826439000200304.
    1. Murphy SL. Review of physical activity measurement using accelerometers in older adults: considerations for research design and conduct. Prev Med. 2009;48:108–114. doi: 10.1016/j.ypmed.2008.12.001.
    1. Westerterp KR. Physical activity assessment with accelerometers. Int J Obes Relat Metab Disord. 1999;23(Suppl 3):S45–S49. doi: 10.1038/sj.ijo.0800883.
    1. Maddocks M, Byrne A, Johnson CD, Wilson RH, Fearon KC, Wilcock A. Physical activity level as an outcome measure for use in cancer cachexia trials: a feasibility study. Support Care Cancer. 2010;18:1539–1544. doi: 10.1007/s00520-009-0776-2.
    1. Loprinzi PD, Lee H, Cardinal BJ. Objectively measured physical activity among US cancer survivors: considerations by weight status. J Cancer Surviv. 2013;7:493–499. doi: 10.1007/s11764-013-0293-7.
    1. Pinto BM, Papandonatos GD, Goldstein MG, Marcus BH, Farrell N. Home-based physical activity intervention for colorectal cancer survivors. Psychooncology. 2013;22:54–64. doi: 10.1002/pon.2047.
    1. Smith WA, Nolan VG, Robison LL, Hudson MM, Ness KK. Physical activity among cancer survivors and those with no history of cancer—a report from the National Health and Nutrition Examination Survey 2003–2006. Am J Transl Res. 2011;3:342–350.
    1. Innominato PF, Focan C, Gorlia T, Moreau T, Garufi C, Waterhouse J, et al. Circadian rhythm in rest and activity: a biological correlate of quality of life and a predictor of survival in patients with metastatic colorectal cancer. Cancer Res. 2009;69:4700–4707. doi: 10.1158/0008-5472.CAN-08-4747.
    1. Minors D, Akerstedt T, Atkinson G, Dahlitz M, Folkard S, Levi F, et al. The difference between activity when in bed and out of bed. I. Healthy subjects and selected patients. Chronobiol Int. 1996;13:27–34. doi: 10.3109/07420529609040839.
    1. Heil DP, Brage S, Rothney MP. Modeling physical activity outcomes from wearable monitors. Med Sci Sports Exerc. 2012;44:S50–S60. doi: 10.1249/MSS.0b013e3182399dcc.
    1. Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30:777–781. doi: 10.1097/00005768-199805000-00021.
    1. Roth MA, Mindell JS. Who provides accelerometry data? Correlates of adherence to wearing an accelerometry motion sensor: the 2008 Health Survey for England. J Phys Act Health. 2013;10:70–78.
    1. Hassani M, Kivimaki M, Elbaz A, Shipley M, Singh-Manoux A, Sabia S. Non-consent to a wrist-worn accelerometer in older adults: the role of socio-demographic, behavioural and health factors. PLoS One. 2014;9:e110816. doi: 10.1371/journal.pone.0110816.
    1. Matthews CE, Hagstromer M, Pober DM, Bowles HR. Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc. 2012;44:S68–S76. doi: 10.1249/MSS.0b013e3182399e5b.
    1. Trost SG, McIver KL, Pate RR. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc. 2005;37:S531–S543. doi: 10.1249/01.mss.0000185657.86065.98.
    1. Sirard JR, Slater ME. Compliance with wearing physical activity accelerometers in high school students. J Phys Act Health. 2009;6(Suppl 1):S148–S155.
    1. Broderick JM, Ryan J, O’Donnell DM, Hussey J. A guide to assessing physical activity using accelerometry in cancer patients. Support Care Cancer. 2014;22:1121–1130. doi: 10.1007/s00520-013-2102-2.
    1. Cleland I, Kikhia B, Nugent C, Boytsov A, Hallberg J, Synnes K, et al. Optimal placement of accelerometers for the detection of everyday activities. Sensors (Basel) 2013;13:9183–9200. doi: 10.3390/s130709183.
    1. Barreira TV, Brouillette RM, Foil HC, Keller JN, Tudor-Locke C. Comparison of older adults’ steps per day using NL-1000 pedometer and two GT3X+ accelerometer filters. J Aging Phys Act. 2013;21:402–416.

Source: PubMed

3
订阅