Circulating bilirubin levels and risk of colorectal cancer: serological and Mendelian randomization analyses

Nazlisadat Seyed Khoei, Mazda Jenab, Neil Murphy, Barbara L Banbury, Robert Carreras-Torres, Vivian Viallon, Tilman Kühn, Bas Bueno-de-Mesquita, Krasimira Aleksandrova, Amanda J Cross, Elisabete Weiderpass, Magdalena Stepien, Andrew Bulmer, Anne Tjønneland, Marie-Christine Boutron-Ruault, Gianluca Severi, Franck Carbonnel, Verena Katzke, Heiner Boeing, Manuela M Bergmann, Antonia Trichopoulou, Anna Karakatsani, Georgia Martimianaki, Domenico Palli, Giovanna Tagliabue, Salvatore Panico, Rosario Tumino, Carlotta Sacerdote, Guri Skeie, Susana Merino, Catalina Bonet, Miguel Rodríguez-Barranco, Leire Gil, Maria-Dolores Chirlaque, Eva Ardanaz, Robin Myte, Johan Hultdin, Aurora Perez-Cornago, Dagfinn Aune, Konstantinos K Tsilidis, Demetrius Albanes, John A Baron, Sonja I Berndt, Stéphane Bézieau, Hermann Brenner, Peter T Campbell, Graham Casey, Andrew T Chan, Jenny Chang-Claude, Stephen J Chanock, Michelle Cotterchio, Steven Gallinger, Stephen B Gruber, Robert W Haile, Jochen Hampe, Michael Hoffmeister, John L Hopper, Li Hsu, Jeroen R Huyghe, Mark A Jenkins, Amit D Joshi, Ellen Kampman, Susanna C Larsson, Loic Le Marchand, Christopher I Li, Li Li, Annika Lindblom, Noralane M Lindor, Vicente Martín, Victor Moreno, Polly A Newcomb, Kenneth Offit, Shuji Ogino, Patrick S Parfrey, Paul D P Pharoah, Gad Rennert, Lori C Sakoda, Clemens Schafmayer, Stephanie L Schmit, Robert E Schoen, Martha L Slattery, Stephen N Thibodeau, Cornelia M Ulrich, Franzel J B van Duijnhoven, Korbinian Weigl, Stephanie J Weinstein, Emily White, Alicja Wolk, Michael O Woods, Anna H Wu, Xuehong Zhang, Pietro Ferrari, Gabriele Anton, Annette Peters, Ulrike Peters, Marc J Gunter, Karl-Heinz Wagner, Heinz Freisling, Nazlisadat Seyed Khoei, Mazda Jenab, Neil Murphy, Barbara L Banbury, Robert Carreras-Torres, Vivian Viallon, Tilman Kühn, Bas Bueno-de-Mesquita, Krasimira Aleksandrova, Amanda J Cross, Elisabete Weiderpass, Magdalena Stepien, Andrew Bulmer, Anne Tjønneland, Marie-Christine Boutron-Ruault, Gianluca Severi, Franck Carbonnel, Verena Katzke, Heiner Boeing, Manuela M Bergmann, Antonia Trichopoulou, Anna Karakatsani, Georgia Martimianaki, Domenico Palli, Giovanna Tagliabue, Salvatore Panico, Rosario Tumino, Carlotta Sacerdote, Guri Skeie, Susana Merino, Catalina Bonet, Miguel Rodríguez-Barranco, Leire Gil, Maria-Dolores Chirlaque, Eva Ardanaz, Robin Myte, Johan Hultdin, Aurora Perez-Cornago, Dagfinn Aune, Konstantinos K Tsilidis, Demetrius Albanes, John A Baron, Sonja I Berndt, Stéphane Bézieau, Hermann Brenner, Peter T Campbell, Graham Casey, Andrew T Chan, Jenny Chang-Claude, Stephen J Chanock, Michelle Cotterchio, Steven Gallinger, Stephen B Gruber, Robert W Haile, Jochen Hampe, Michael Hoffmeister, John L Hopper, Li Hsu, Jeroen R Huyghe, Mark A Jenkins, Amit D Joshi, Ellen Kampman, Susanna C Larsson, Loic Le Marchand, Christopher I Li, Li Li, Annika Lindblom, Noralane M Lindor, Vicente Martín, Victor Moreno, Polly A Newcomb, Kenneth Offit, Shuji Ogino, Patrick S Parfrey, Paul D P Pharoah, Gad Rennert, Lori C Sakoda, Clemens Schafmayer, Stephanie L Schmit, Robert E Schoen, Martha L Slattery, Stephen N Thibodeau, Cornelia M Ulrich, Franzel J B van Duijnhoven, Korbinian Weigl, Stephanie J Weinstein, Emily White, Alicja Wolk, Michael O Woods, Anna H Wu, Xuehong Zhang, Pietro Ferrari, Gabriele Anton, Annette Peters, Ulrike Peters, Marc J Gunter, Karl-Heinz Wagner, Heinz Freisling

Abstract

Background: Bilirubin, a byproduct of hemoglobin breakdown and purported anti-oxidant, is thought to be cancer preventive. We conducted complementary serological and Mendelian randomization (MR) analyses to investigate whether alterations in circulating levels of bilirubin are associated with risk of colorectal cancer (CRC). We decided a priori to perform analyses separately in men and women based on suggestive evidence that associations may differ by sex.

Methods: In a case-control study nested in the European Prospective Investigation into Cancer and Nutrition (EPIC), pre-diagnostic unconjugated bilirubin (UCB, the main component of total bilirubin) concentrations were measured by high-performance liquid chromatography in plasma samples of 1386 CRC cases and their individually matched controls. Additionally, 115 single-nucleotide polymorphisms (SNPs) robustly associated (P < 5 × 10-8) with circulating total bilirubin were instrumented in a 2-sample MR to test for a potential causal effect of bilirubin on CRC risk in 52,775 CRC cases and 45,940 matched controls in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), the Colon Cancer Family Registry (CCFR), and the Colorectal Transdisciplinary (CORECT) study.

Results: The associations between circulating UCB levels and CRC risk differed by sex (Pheterogeneity = 0.008). Among men, higher levels of UCB were positively associated with CRC risk (odds ratio [OR] = 1.19, 95% confidence interval [CI] = 1.04-1.36; per 1-SD increment of log-UCB). In women, an inverse association was observed (OR = 0.86 (0.76-0.97)). In the MR analysis of the main UGT1A1 SNP (rs6431625), genetically predicted higher levels of total bilirubin were associated with a 7% increase in CRC risk in men (OR = 1.07 (1.02-1.12); P = 0.006; per 1-SD increment of total bilirubin), while there was no association in women (OR = 1.01 (0.96-1.06); P = 0.73). Raised bilirubin levels, predicted by instrumental variables excluding rs6431625, were suggestive of an inverse association with CRC in men, but not in women. These differences by sex did not reach formal statistical significance (Pheterogeneity ≥ 0.2).

Conclusions: Additional insight into the relationship between circulating bilirubin and CRC is needed in order to conclude on a potential causal role of bilirubin in CRC development.

Keywords: Anti-oxidants; Bilirubin; Cancer; Colorectal cancer; Mendelian randomization analysis.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Scatter plots depicting the genetic association between total bilirubin levels and colorectal cancer risk. Per allele association of total bilirubin SNPs with inverse-normal-transformed bilirubin levels (x axis) and risk for colorectal cancer (y axis; logarithmic scale) in men (a) and in women (b), together with the likelihood-based MR estimate for the genetic instrument comprising of the 114 SNPs (dashed-blue line) and their 95% CI (dotted-blue lines)

References

    1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
    1. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683–691.
    1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674.
    1. Lasry A, Zinger A, Ben-Neriah Y. Inflammatory networks underlying colorectal cancer. Nat Immunol. 2016;17(3):230–240.
    1. Wagner KH, Wallner M, Molzer C, Gazzin S, Bulmer AC, Tiribelli C, et al. Looking to the horizon: the role of bilirubin in the development and prevention of age-related chronic diseases. Clin Sci (London) 2015;129(1):1–25.
    1. Sedlak TW, Saleh M, Higginson DS, Paul BD, Juluri KR, Snyder SH. Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proc Natl Acad Sci U S A. 2009;106(13):5171–5176.
    1. Rodrigues CM, Sola S, Brito MA, Brites D, Moura JJ. Bilirubin directly disrupts membrane lipid polarity and fluidity, protein order, and redox status in rat mitochondria. J Hepatol. 2002;36(3):335–341.
    1. Hansen TW, Mathiesen SB, Walaas SI. Bilirubin has widespread inhibitory effects on protein phosphorylation. Pediatr Res. 1996;39(6):1072–1077.
    1. Fevery J. Bilirubin in clinical practice: a review. Liver int. 2008;28(5):592–605.
    1. Wagner KH, Shiels RG, Lang CA, Seyed Khoei N, Bulmer AC. Diagnostic criteria and contributors to Gilbert’s syndrome. Crit Rev Clin Lab Sci. 2018;55(2):129–139.
    1. Zucker SD, Goessling W, Hoppin AG. Unconjugated bilirubin exhibits spontaneous diffusion through model lipid bilayers and native hepatocyte membranes. J Biol Chem. 1999;274(16):10852–10862.
    1. Keshavan P, Schwemberger SJ, Smith DL, Babcock GF, Zucker SD. Unconjugated bilirubin induces apoptosis in colon cancer cells by triggering mitochondrial depolarization. Int J Cancer. 2004;112(3):433–445.
    1. Corich L, Aranda A, Carrassa L, Bellarosa C, Ostrow JD, Tiribelli C. The cytotoxic effect of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells is modulated by the expression level of MRP1 but not MDR1. Biochem J. 2009;417(1):305–312.
    1. Muraca M, Fevery J. Influence of sex and sex steroids on bilirubin uridine diphosphate-glucuronosyltransferase activity of rat liver. Gastroenterology. 1984;87(2):308–313.
    1. Molzer C, Wallner M, Kern C, Tosevska A, Zadnikar R, Doberer D, et al. Characteristics of the heme catabolic pathway in mild unconjugated hyperbilirubinemia and their associations with inflammation and disease prevention. Sci Rep. 2017;7(1):755.
    1. Murphy WG. The sex difference in haemoglobin levels in adults - mechanisms, causes, and consequences. Blood Rev. 2014;28(2):41–47.
    1. Jiraskova A, Novotny J, Novotny L, Vodicka P, Pardini B, Naccarati A, et al. Association of serum bilirubin and promoter variations in HMOX1 and UGT1A1 genes with sporadic colorectal cancer. Int J Cancer. 2012;131(7):1549–1555.
    1. Zaman S, Fukushima H, Suzuki R, Hawlader M, Yoshimatsu S, Kanai UA, GU, et al. Prevalence of Gilbert syndrome in Bangladesh. Open J Blood Dis. 2018;8(1):1–9.
    1. Zucker SD, Horn PS, Sherman KE. Serum bilirubin levels in the U.S. population: gender effect and inverse correlation with colorectal cancer. Hepatology (Baltimore) 2004;40(4):827–835.
    1. Ye J, Cui L, Zhou Y, Huang Y, Banafa O, Hou X, et al. “Gilbert’s-like” syndrome as part of a spectrum of persistent unconjugated hyperbilirubinemia in post-chronic hepatitis patients. Sci Rep. 2018;8(1):2008.
    1. Tang KS, Chiu HF, Chen HH, Eng HL, Tsai CJ, Teng HC, et al. Link between colorectal cancer and polymorphisms in the uridine-diphosphoglucuronosyltransferase 1A7 and 1A1 genes. World J Gastroenterol. 2005;11(21):3250–3254.
    1. Ioannou GN, Liou IW, Weiss NS. Serum bilirubin and colorectal cancer risk: a population-based cohort study. Aliment Pharmacol Ther. 2006;23(11):1637–1642.
    1. Bajro MH, Josifovski T, Panovski M, Jankulovski N, Nestorovska AK, Matevska N, et al. Promoter length polymorphism in UGT1A1 and the risk of sporadic colorectal cancer. Cancer Genet. 2012;205(4):163–167.
    1. Girard H, Butler LM, Villeneuve L, Millikan RC, Sinha R, Sandler RS, et al. UGT1A1 and UGT1A9 functional variants, meat intake, and colon cancer, among Caucasians and African-Americans. Mutat Res. 2008;644(1–2):56–63.
    1. Temme EH, Zhang J, Schouten EG, Kesteloot H. Serum bilirubin and 10-year mortality risk in a Belgian population. Cancer Causes Control. 2001;12(10):887–894.
    1. Kuhn T, Sookthai D, Graf ME, Schubel R, Freisling H, Johnson T, et al. Albumin, bilirubin, uric acid and cancer risk: results from a prospective population-based study. Br J Cancer. 2017;117(10):1572–1579.
    1. Riboli E, Kaaks R. The EPIC Project: rationale and study design. European Prospective Investigation into Cancer and Nutrition. In J Epidemiol. 1997;26(Suppl 1):S6–14.
    1. Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5(6B):1113–1124.
    1. Jenab M, Bueno-de-Mesquita HB, Ferrari P, van Duijnhoven FJ, Norat T, Pischon T, et al. Association between pre-diagnostic circulating vitamin D concentration and risk of colorectal cancer in European populations:a nested case-control study. BMJ. 2010;340:b5500.
    1. Molzer C, Huber H, Steyrer A, Ziesel G, Ertl A, Plavotic A, et al. In vitro antioxidant capacity and antigenotoxic properties of protoporphyrin and structurally related tetrapyrroles. Free Radic Res. 2012;46(11):1369–1377.
    1. Wallner M, Bulmer AC, Molzer C, Mullner E, Marculescu R, Doberer D, et al. Haem catabolism: a novel modulator of inflammation in Gilbert’s syndrome. Eur J Clin Investig. 2013;43(9):912–919.
    1. Sinnott-Armstrong N TY, Amar D, Mars N, Aguirre M, Venkataraman GR, et al. Genetics of 38 blood and urine biomarkers in the UK Biobank. bioRxiv 660506; 2019. 10.1101/660506.
    1. Collins R. What makes UK Biobank special? Lancet (London) 2012;379(9822):1173–1174.
    1. Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol. 2016;40(7):597–608.
    1. Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40(3):755–764.
    1. National Cancer Institute. . [Accessed Jan 2020].
    1. Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, Baron JA, et al. Identification of genetic susceptibility loci for colorectal tumors in a genome-wide meta-analysis. Gastroenterology. 2013;144(4):799–807.e24.
    1. Newcomb PA, Baron J, Cotterchio M, Gallinger S, Grove J, Haile R, et al. Colon Cancer Family Registry: an international resource for studies of the genetic epidemiology of colon cancer. Cancer Epidemiol. 2007;16(11):2331–2343.
    1. Wang H, Burnett T, Kono S, Haiman CA, Iwasaki M, Wilkens LR, et al. Trans-ethnic genome-wide association study of colorectal cancer identifies a new susceptibility locus in VTI1A. Nat Commun. 2014;5:4613.
    1. Schmit SL, Edlund CK, Schumacher FR, Gong J, Harrison TA, Huyghe JR, et al. Novel common genetic susceptibility loci for colorectal cancer. J Natl Cancer Inst. 2019;111(2):146-57.
    1. Huyghe JR, Bien SA, Harrison TA, Kang HM, Chen S, Schmit SL, et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet. 2019;51(1):76-87.
    1. Hernán MA, Robins JM. Causal inference: what if. Boca Raton: Chapman & Hall/CRC; 2020.
    1. Nicola O. A procedure to tabulate and plot results after flexible modeling of a quantitative covariate. Stata J. 2011;11(1):1–29.
    1. Smith-Warner SA, Spiegelman D, Ritz J, Albanes D, Beeson WL, Bernstein L, et al. Methods for pooling results of epidemiologic studies: the Pooling Project of Prospective Studies of Diet and Cancer. Am J Epidemiol. 2006;163(11):1053–1064.
    1. Sugiyama M, Kanno T, Ohkubo A, Muto Y, Murata K, Ueno Y. The clinical usefulness of the molar ratio of branched-chain amino acids to tyrosine (BTR) in discriminating stage of chronic liver diseases. Rinsho byori Japan J Clin Pathol. 1992;40(6):673–678.
    1. Ishikawa T. Branched-chain amino acids to tyrosine ratio value as a potential prognostic factor for hepatocellular carcinoma. World J Gastroenterol. 2012;18(17):2005–2008.
    1. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–698.
    1. Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat Med. 2016;35(11):1880–1906.
    1. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med. 2017;36(11):1783–1802.
    1. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–525.
    1. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–314.
    1. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–1998.
    1. Buckley DB, Klaassen CD. Mechanism of gender-divergent UDP-glucuronosyltransferase mRNA expression in mouse liver and kidney. Drug Metab Dispos. 2009;37(4):834–840.
    1. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Bilirubin is an antioxidant of possible physiological importance. Science (New York) 1987;235(4792):1043–1046.
    1. Stocker R. Antioxidant activities of bile pigments. Antioxid Redox Signal. 2004;6(5):841–849.
    1. Rao P, Suzuki R, Mizobuchi S, Yamaguchi T, Sasaguri S. Bilirubin exhibits a novel anti-cancer effect on human adenocarcinoma. Biochem Biophys Res Commun. 2006;342(4):1279–1283.
    1. Seo MY, Lee SM. Protective effect of low dose of ascorbic acid on hepatobiliary function in hepatic ischemia/reperfusion in rats. J Hepatol. 2002;36(1):72–77.
    1. Bosma PJ. Inherited disorders of bilirubin metabolism. J Hepatol. 2003;38(1):107–117.
    1. Zheng J, Baird D, Borges MC, Bowden J, Hemani G, Haycock P, et al. Recent developments in Mendelian randomization studies. Curr Epidemiol Rep. 2017;4(4):330–345.
    1. van der Logt EM, Bergevoet SM, Roelofs HM, van Hooijdonk Z, te Morsche RH, Wobbes T, et al. Genetic polymorphisms in UDP-glucuronosyltransferases and glutathione S-transferases and colorectal cancer risk. Carcinogenesis. 2004;25(12):2407–2415.
    1. Wallner M, Marculescu R, Doberer D, Wolzt M, Wagner O, Vitek L, et al. Protection from age-related increase in lipid biomarkers and inflammation contributes to cardiovascular protection in Gilbert’s syndrome. Clin Sci (London) 2013;125(5):257–264.
    1. Seyed Khoei N, Grindel A, Wallner M, Molzer C, Doberer D, Marculescu R, et al. Mild hyperbilirubinaemia as an endogenous mitigator of overweight and obesity: implications for improved metabolic health. Atherosclerosis. 2018;269:306–311.
    1. Hernan MA. The hazards of hazard ratios. Epidemiology (Cambridge) 2010;21(1):13–15.
    1. Gkatzionis A, Burgess S. Contextualizing selection bias in Mendelian randomization: how bad is it likely to be? Int J Epidemiol. 2019;48(3):691–701.
    1. Magno R, Maia AT. gwasrapidd: an R package to query, download and wrangle GWAS catalog data. Bioinformatics (Oxford) 2020;36(2):649–650.
    1. Hemani G, Bowden J, Davey SG. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet. 2018;27(R2):R195–r208.

Source: PubMed

3
订阅