Louse- and flea-borne rickettsioses: biological and genomic analyses

Joseph J Gillespie, Nicole C Ammerman, Magda Beier-Sexton, Bruno S Sobral, Abdu F Azad, Joseph J Gillespie, Nicole C Ammerman, Magda Beier-Sexton, Bruno S Sobral, Abdu F Azad

Abstract

In contrast to 15 or more validated and/or proposed tick-borne spotted fever group species, only three named medically important rickettsial species are associated with insects. These insect-borne rickettsiae are comprised of two highly pathogenic species, Rickettsia prowazekii (the agent of epidemic typhus) and R. typhi (the agent of murine typhus), as well as R. felis, a species with unconfirmed pathogenicity. Rickettsial association with obligate hematophagous insects such as the human body louse (R. prowazekii transmitted by Pediculus h. humanus) and several flea species (R. typhi and R. felis, as well as R. prowazekii in sylvatic form) provides rickettsiae the potential for further multiplications, longer transmission cycles and rapid spread among susceptible human populations. Both human body lice and fleas are intermittent feeders capable of multiple blood meals per generation, facilitating the efficient transmission of rickettsiae to several disparate hosts within urban/rural ecosystems. While taking into consideration the existing knowledge of rickettsial biology and genomic attributes, we have analyzed and summarized the interacting features that are unique to both the rickettsiae and their vector fleas and lice. Furthermore, factors that underlie rickettsial changing ecology, where native mammalian populations are involved in the maintenance of rickettsial cycle and transmission, are discussed.

Figures

Figure 1.
Figure 1.
Phylogenomic characteristics of insect-associated rickettsiae. (A) Estimated phylogeny from an exhaustive search under parsimony of 731 core rickettsial proteins, with branch support from one million bootstrap replicates (redrawn from [22]). Ancestral group (AG) (red on the web figure) rickettsiae, typhus group (TG) (teal) rickettsiae, transitional group (TRG) (blue) rickettsiae, and spotted fever group (SFG) (brown) rickettsiae. Dashed box encloses the three representative insect-associated Rickettsia species. (B) Intersection of the unique R. typhi, R. prowazekii and R. felis genes that are not found in tick-associated Rickettsia. Data are from protein family clustering [22]. (C) List of genes shared exclusively by TG rickettsiae and insect-associated rickettsiae. Further descriptions of the shared RiOGs are posted at the PATRIC website [39].

References

    1. Anonymous. The control of lice and louse-borne diseases. Pan American Health Organization/World Health Organization; Washington D.C.: 1973. pp. 1–311.
    1. Adams J.R., Schmidtmann E.T., Azad A.F.. Infection of colonized cat fleas, Ctenocephalides felis with a rickettsia-like microorganism. Am. J. Trop. Med. Hyg. 1990;43:400–409.
    1. Azad A.F. Walker D.H. Biology of rickettsial diseases. CRC; 1988. relationship of vector biology and epidemiology of louse and flea-borne rickettsioses; pp. 51–61.
    1. Azad A.F., Traub R.. Experimental transmission of murine typhus by Xenopsylla cheopis flea bites. Med. Vet. Entomol. 1989;3:429–433.
    1. Azad A.F.. Epidemiology of murine typhus. Ann. Rev. Entomol. 1990;35:553–569.
    1. Azad A.F., Sacci J.B. Jr., Nelson W.M., Dasch G.A., Schmidtman E.T., Carl M.. Genetic characterization and transovarial transmission of a novel typhus-like Rickettsia found in cat fleas. Proc. Natl. Acad. Sci. USA. 1992;89:43–46.
    1. Azad A.F., Radulovic S., Higgins J.A., Noden B.H., Troyer M.J.. Flea-borne rickettsioses: some ecological considerations. Emerg. Infect. Dis. 1997;3:319–328.
    1. Azad A.F., Beard C.B.. Interactions of rickettsial pathogens with arthropod vectors. Emerg. Infect. Dis. 1998;4:179–186.
    1. Brill N.E.. An acute infectious disease of unknown origin: A clinical study based on 221 cases. Am. J. Med. Sci. 1910;139:484–502.
    1. Boostrom A.M., Beier S., Macaluso J.A., Macaluso K.R., Sprenger D., Hayes J.. et al. Opossums, cat fleas and rickettsial diseases in Texas. Emerg. Infect. Dis. 2002;8:543–548.
    1. Bozeman F.M., Masiello S.A., Williams M.S., Elisberg B.L.. Epidemic typhus rickettsiae isolated from flying squirrels. Nature. 1975;255:545–547.
    1. Bouyer D.H., Stenos J., Crocquet-Valdes P., Moron C.G., Popov V.L., Zavala-Velazquez J.E., Foil L.D., Stothard D.R., Azad A.F., Walker D.H.. Rickettsia felis: the molecular characterization of a new member of the spotted fever group. Int. J. Syst. Evol. Microbiol. 2001;51:339–347.
    1. Burgdoerfer W., Anacker R.L. Academic Press; 1981. Rickettsiae and rickettsial diseases; p. 650.
    1. Case J.B., Chomel B., Nicholson W., Foley J.E.. Serological survey of vector-borne zoonotic pathogens in pet cat and cats from animal shelters and feral colonies. J. Feline Med. Surg. 2005;8:111–117.
    1. Cho N.-H., Kim H.R., Lee J.H., Kim S.Y., Kim J., Cha S.. et al. The Orientia tsutsugamushi, genome reveals massive proliferation of conjugative type IV secretion system and host-cell interaction genes. Proc. Natl. Acad. Sci. USA. 2007;104:7981–7986.
    1. Duma R.J., Sonenshine D.E., Bozeman F.M., Veazey J.M. Jr., Elisberg B.L., Chadwick D.P.. et al. Epidemic typhus in the United States associated with flying squirrels. JAMA. 1981;245:2318–2323.
    1. Dumler J.S., Taylor J.P., Walker D.H.. Clinical and laboratory features of murine typhus in South Texas, 1980 through 1987. JAMA. 1991;266:1365–1370.
    1. Fuxelius H.-H., Darby A.C., Cho N.-H., Andersson S.G.E.. Visualization of pseudogenes in intracellular bacteria reveals the different tracks to gene destruction. Genome Biol. 2008;9:R42.
    1. Gillespie J.J., Beier M.S., Rahman M.S., Ammerman N.C., Shallom J.M., Purkayastha A.. et al. Horizontal inheritance of plasmid genes in Rickettsia felis. PLoS One. 2007;2:e266.
    1. Gillespie J.J., Williams K., Shukla M., Snyder E.E., Nordberg E.K., Ceraul S.M.. et al. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One. 2008;3:e2018.
    1. Gouin E., Egile C., Dehoux P., Villiers V., Adams J., Gertler F.. et al. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature. 2004;427:457–461.
    1. Higgins J.A., Sacci J.P. Jr., Schriefer M.E., Endris R.G., Azad A.F.. Molecular identification of rickettsia-like microorganisms associated with colonized cat fleas (Ctenocephalides felis) Insect Mol. Biol. 1994;3:27–33.
    1. Higgins J.A., Radulovic S., Schriefer M.E., Azad A.F.. Rickettsia felis: a new species of pathogenic rickettsia isolated from cat fleas. J. Clin. Microbiol. 1996;34:671–674.
    1. Horta M.C., Lubruna M.B., Durigon E.L., Schumaker T.T.S.. Isolation of Rickettsia felis in mosquito cell line C6/36. Appl. Environ. Microbiol. 2006;72:1705–1707.
    1. Jeng R.L., Goley E.D., D’Alessio J.A., Chaga O.Y., Svitkina M., Borisy G.G.. et al. A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility. Cell. Microbiol. 2004;6:761–769.
    1. Macaluso K.R., Pornwiroon W., Popov V.L., Foil L.D.. Identification of Rickettsia felis in the salivary glands of cat fleas. Vector Borne Zoonotic Dis. 2008;8:391–396.
    1. McDade J.E., Shepard C.C., Redus M.A., Newhouse V.F., Smith J.D.. Evidence of Rickettsia prowazekii infections in the United States. Am. J. Trop. Med. Hyg. 1980;29:277–284.
    1. Noden B.H., Radulovic S., Higgins J.A., Azad A.F.. Molecular identification of two closely related rickettsial species, Rickettsia typhi and R. felis, in individual cat fleas, Ctenocephalides felis (Siphonaptera: Pulicidae) J. Med. Entomol. 1998;35:410–414.
    1. Ogata H., Renesto P., Audic S., Robert C., Blanc G., Fournier P.-E.. et al. The genome sequence of Rickettsia felis identifies the first putative conjugative plasmid in an obligate intracellular parasite. PLoS Biol. 2005;3:e248.
    1. Parker R.T., Menon P.G., Merideth A.M., Snyder M.J., Woodward T.E.. Persistence of Rickettsia rickettsii in a patient recovered from Rocky Mountain spotted fever. J. Immunol. 1954;73:383–386.
    1. Perine P.L., Chandler B.P., Krause D.K., McCardle P., Awoke S., Habte-Gabr E., Wisseman C.L. Jr., McDade J.E.. A clinico-epidemiological study of epidemic typhus in Africa. Clin. Infect. Dis. 1992;14:1149–1158.
    1. Pérez-Osorio C.E., Zavala-Velázquez J.E., Arias León J.J., Zavala-Castro J.E.. Rickettsia felis as emergent global threat for humans. Emerg. Infect. Dis. 2008;14:1019–1023.
    1. Perlman S.J., Hunter M.S., Zchori-Fein E.. The emerging diversity of Rickettsia. Proc. Biol. Sci. 2006;273:2097–2106.
    1. Pornwiroon W., Pourciau S.S., Foil D.L., Macaluso K.R.. Rickettsia felis from cat fleas: isolation and culture in a tick-derived cell line. Appl. Environ. Microbiol. 2006;72:5589–5595.
    1. Raoult D., La Scola B., Enea M., Fournier P.E., Roux V., Fenollar F.. et al. A flea-associated rickettsia pathogenic for humans. Emerg. Infect. Dis. 2001;7:73–81.
    1. Robinson D., Leo N., Prociv P., Barker S.C.. Potential role of head lice, Pediculus humanus capitis, as vector of Rickettsia prowazekii. Parasitol. Res. 2003;90:209–211.
    1. Schriefer M.E., Sacci J.B. Jr., Higgins J.A., Taylor J.P., Azad A.F.. Murine typhus: updated role of multiple urban components and a second typhus-like rickettsiae. J. Med. Entomol. 1994;31:681–685.
    1. Schriefer M.E., Sacci J.B. Jr., Dumler J.S., Bullen M.G., Azad A.F.. Identification of a novel rickettsial infection in a patient diagnosed with murine typhus. J. Clin. Microbiol. 1994;32:949–954.
    1. Snyder E.E., Kampanya N., Lu J., Nordberg E. K., Karur H.R.. et al. PATRIC: the VBI PathoSystems Resource Integration Center. Nucleic Acids Res. 2007;35:D401–D406.
    1. Stothard D.R., Clark J.B., Fuerst P.A.. Ancestral divergence of Rickettsia bellii from the spotted fever and typhus groups of rickettsia and antiquity of the genus Rickettsia. Int. J. Syst. Bacteriol. 1994;44:798–804.
    1. Stothard D.R., Fuerst P.A.. Evolutionary analysis of the spotted fever and typhus groups of Rickettsia using 16S rRNA gene sequences. Syst. Appl. Microbiol. 1995;18:52–61.
    1. Traub R., Wisseman C.L. Jr., Farhang-Azad A.. The ecology of murine typhus – a critical review. Trop. Dis. Bull. 1978;75:237–317.
    1. Walker D.H., Ismail N.. Emerging and re-emerging rickettsioses: endothelial cell infection and early disease events. Nat. Rev. Microbiol. 2008;6:375–386.
    1. Wolbach S.B., Todd J.L., Palfrey F.W. The etiology and pathology of typhus. League of Red Cross Societies at the Harvard University Press; Cambridge: 1922. Pathology of typhus in man; pp. 152–221.
    1. Yu X.-J., Walker D.H. Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. The Prokaryotes. 3rd ed. Springer; 2006. The Order Rickettsiales; pp. 493–528.
    1. Zavala-Velazquez J.E., Ruiz-Sosa J.A., Sanchez-Elias R.A., Becerra-Carmona G., Walker D.H.. Rickettsia felis rickettsiosis in Yucatan. Lancet. 2000;356:1079–1080.

Source: PubMed

3
订阅