Cost-effectiveness analysis of replacing the 10-valent pneumococcal conjugate vaccine (PCV10) with the 13-valent pneumococcal conjugate vaccine (PCV13) in Brazil infants

Johnna Perdrizet, Carlos Felipe S Santana, Thais Senna, Rodrigo Fernandes Alexandre, Rodrigo Sini de Almeida, Julia Spinardi, Matt Wasserman, Johnna Perdrizet, Carlos Felipe S Santana, Thais Senna, Rodrigo Fernandes Alexandre, Rodrigo Sini de Almeida, Julia Spinardi, Matt Wasserman

Abstract

Brazil currently has a 10-valent pneumococcal conjugate vaccine (PCV10) pediatric national immunization program (NIP). However, in recent years, there has been significant progressive increases in pneumococcal disease attributed to serotypes 3, 6A, and 19A, which are covered by the 13-valent PCV (PCV13). We sought to evaluate the cost-effectiveness and budget impact of switching from PCV10 to PCV13 for Brazilian infants from a payer perspective. A decision-analytic model was adapted to evaluate the clinical and economic outcomes of continuing PCV10 or switching to PCV13. The analysis estimated future costs ($BRL), quality-adjusted life-years (QALYs), and health outcomes for PCV10 and PCV13 over 5 y. Input parameters were from published sources. Future serotype dynamics were predicted using Brazilian and global historical trends. Over 5 y, PCV13 could prevent 12,342 bacteremia, 15,330 meningitis, 170,191 hospitalized pneumonia, and 25,872 otitis media cases, avert 13,709 pneumococcal disease deaths, gain 20,317 QALYs, and save 172 million direct costs compared with PCV10. The use of PCV13 in the Brazilian NIP could reduce pneumococcal disease, improve population health, and save substantial health-care costs. Results are reliable even when considering uncertainty for possible serotype dynamics with different underlying assumptions.

Trial registration: ClinicalTrials.gov NCT03760146.

Keywords: Brazil; PCV; Streptococcus pneumoniae; budget impact; cost-effectiveness; cost-utility analysis; economic evaluation; national immunization program; pneumococcal vaccine.

Figures

Figure 1.
Figure 1.
Base case historical invasive pneumococcal disease incidence (IPD) per 100,000 in infants 0–2 y of age in (a) 0–2 y of age, (b) 65 y or older, and (c) all ages. Data presented represent the launch of 10-valent pneumococcal conjugate vaccine (PCV10) and the historical serotype trends contained in 7-valent pneumococcal conjugate vaccine (PCV7); 1,5, and 7 F serotypes; 3, 6A, and 19A serotypes; and non-covered vaccine serotypes. Real-world data are based on the serotypes causing IPD reported annually in Brazil and incidence reported in Colombia
Figure 2.
Figure 2.
Base case invasive pneumococcal disease (IPD) serotype distribution at time of decision to switch and forecasted at 5 y with implementing either PCV10 or PCV13 on the Brazilian NIP in (a) 0 to 2 y of age, (b) 65 y of age or older, and (c) all ages. “At time of decision” indicates the “current state of pneumococcal disease considering the switch to the PCV13 strategy”
Figure 3.
Figure 3.
Base case predicted invasive pneumococcal disease incidence (IPD) based on observed real-world data per 100,000 in (a) 0–2 y of age, (b) 65 y or older, and (c) all ages. Data presented represent Historical Data for overall IPD incidence, the year 10-valent pneumococcal conjugate vaccine (PCV10) program was implement in Brazil, the current year reflecting the year the choice was made between maintaining PCV10 on the NIP or switching to PCV13, and predicted IPD for PCV10 (forecasted) and PCV13 (forecasted) depending on the choice made in the current year
Figure 4.
Figure 4.
Scenario analyses showing the predicted invasive pneumococcal disease incidence based on observed real-world data per 100,000 in children 0–2 y of age in Brazil. Scenario analyses were run where 13-valent pneumococcal conjugate vaccine (PCV13) serotype dynamics were predicted using the United Kingdom (UK), Canada (CAN), and Quebec (QC) historical trends. For reference, the base case serotype dynamics are presented for PCV13 using historical United States (US) trends and 10-valent pneumococcal conjugate vaccine (PCV10) using historical Brazil (BR) trends. Implementation of PCV10 on the Brazilian national immunization program (NIP) and schedule changes are shown

References

    1. Brandileone M-C-C, Almeida SCG, Minamisava R, Andrade A-L.. Distribution of invasive Streptococcus pneumoniae serotypes before and 5 years after the introduction of 10-valent pneumococcal conjugate vaccine in Brazil. Vaccine. 2018;36:2559–66. doi:10.1016/j.vaccine.2018.04.010.
    1. Centers for Disease Control and Prevention . Pneumococcal disease. In: Hamborsky J, Kroger A, Wolfe S, editors. Epidemiology and prevention of vaccine-preventable diseases. 13th ed. Washington (DC): Public Health Foundation; 2015. p. 279–96.
    1. Avila-Aguero ML, Ulloa-Gutierrez R, Falleiros-Arlant LH, Porras O. Pneumococcal conjugate vaccines in Latin America: are PCV10 and PCV13 similar in terms of protection against serotype 19A? Expert Rev Vaccines. 2017;16:1–4. doi:10.1080/14760584.2017.1334555.
    1. Global Burden of Disease (GBD). 2016 Lower Respiratory Infections Collaborators . Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018;18:1191–210. doi:10.1016/S1473-3099(18)30310-4.
    1. Mott MP, Caierão J, Cunha GR, Del Maschi MM, Pizzutti K, d’Azevedo P, Dias CAG. Emergence of serotype 19A Streptococcus pneumoniae after PCV10 associated with a ST320 in adult population, in Porto Alegre, Brazil. Epidemiol Infect. 2019;147:e93–e93. doi:10.1017/S0950268819000013.
    1. Cassiolato AP, Almeida SCG, Andrade AL, Minamisava R, Brandileone M. Expansion of the multidrug-resistant clonal complex 320 among invasive Streptococcus pneumoniae serotype 19A after the introduction of a ten-valent pneumococcal conjugate vaccine in Brazil. Plos One. 2018;13:e0208211. doi:10.1371/journal.pone.0208211.
    1. The Latin American Pediatric Association (ALAPE) . ALAPE Board of Directors opinion on the pneumococcal vaccine. 2017.
    1. World Health Organization (WHO) . Summary of WHO Position Paper on Pneumococcal conjugate vaccines in infants and children under 5 years of age. 2019.
    1. Temple B, Toan NT, Dai VTT, Bright K, Licciardi PV, Marimla RA, Nguyen CD, Uyen DY, Balloch A, Huu TN, et al. Immunogenicity and reactogenicity of ten-valent versus 13-valent pneumococcal conjugate vaccines among infants in Ho Chi Minh City, Vietnam: a randomised controlled trial. Lancet Infect Dis. 2019;19:497–509. doi:10.1016/S1473-3099(18)30734-5.
    1. Wijmenga-Monsuur AJ, van Westen E, Knol MJ, Jongerius RMC, Zancolli M, Goldblatt D, van Gageldonk PGM, Tcherniaeva I, Berbers GAM, Rots NY, et al. Direct comparison of immunogenicity induced by 10- or 13-valent pneumococcal conjugate vaccine around the 11-month booster in dutch infants. PLoS One. 2015;10(12):e0144739. doi:10.1371/journal.pone.0144739.
    1. Desmet S, Peetermans W, Lagrou K. Switch in childhood pneumococcal vaccine in Belgium. Lancet Infect Dis. 2018;18:945–46. doi:10.1016/S1473-3099(18)30484-5.
    1. Rinta-Kokko H, Palmu AA, Auranen K, Nuorti JP, Toropainen M, Siira L, Virtanen MJ, Nohynek H, Jokinen J. Long-term impact of 10-valent pneumococcal conjugate vaccination on invasive pneumococcal disease among children in Finland. Vaccine. 2018;36(15):1934–40. doi:10.1016/j.vaccine.2018.03.001.
    1. Naucler P, Galanis I, Morfeldt E, Darenberg J, Ortqvist A, Henriques-Normark B. Comparison of the impact of pneumococcal conjugate vaccine 10 or pneumococcal conjugate vaccine 13 on invasive pneumococcal disease in equivalent populations. Clin Infect Dis. 2017;65:1780–89. doi:10.1093/cid/cix685.
    1. Ministry of Health Chile, Institute of Public Health Chile . Behavior of Streptococcus pneumoniae serotypes 3 and 19A in Chile. Lab Surveillance Bull Inst Public Health Chile. 2016;6:21.
    1. Ministry of Health Columbia, National Institute of Health Columbia . SIREVA II (Surveillance Network System for Agents Responsible for Pneumonia and Bacterial Meningitis) Laboratory Surveillance of invasive isolates of Streptococcus pneumoniae Colombia 2006-2018. 2019.
    1. Hanquet G, Krizova P, Valentiner-Branth P, Ladhani SN, Nuorti JP, Lepoutre A, Mereckiene J, Knol M, Winje BA, Ciruela P. Effect of childhood pneumococcal conjugate vaccination on invasive disease in older adults of 10 European countries: implications for adult vaccination. Thorax. 2019;74(5):473. doi:10.1136/thoraxjnl-2018-211767.
    1. Griffin MR, Mitchel E, Moore MR, Whitney CG, Grijalva CG. Declines in pneumonia hospitalizations of children aged <2 years associated with the use of pneumococcal conjugate vaccines - Tennessee, 1998-2012. MMWR Morb Mortal Wkly Rep. 2014;63:995–98.
    1. Harboe ZB, Dalby T, Weinberger DM, Benfield T, Mølbak K, Slotved HC, Suppli CH, Konradsen HB, Valentiner-Branth P. Impact of 13-valent pneumococcal conjugate vaccination in invasive pneumococcal disease incidence and mortality. Clin Infect Dis. 2014;59(8):1066–73. doi:10.1093/cid/ciu524.
    1. Janoir C, Lepoutre A, Gutmann L, Varon E. Insight into resistance phenotypes of emergent non 13-valent pneumococcal conjugate vaccine type pneumococci isolated from invasive disease after 13-valent pneumococcal conjugate vaccine implementation in France. Open Forum Infect Dis. 2016;3(1):ofw020. doi:10.1093/ofid/ofw020.
    1. Kawai K, Adil EA, Barrett D, Manganella J, Kenna MA. Ambulatory visits for Otitis media before and after the introduction of pneumococcal conjugate vaccination. J Pediatr. 2018;201:122–127.e121. doi:10.1016/j.jpeds.2018.05.047.
    1. Steens A, Bergsaker MA, Aaberge IS, Ronning K, Vestrheim DF. Prompt effect of replacing the 7-valent pneumococcal conjugate vaccine with the 13-valent vaccine on the epidemiology of invasive pneumococcal disease in Norway. Vaccine. 2013;31:6232–38. doi:10.1016/j.vaccine.2013.10.032.
    1. Vespa G, Constenla DO, Pepe C, Safadi MA, Berezin E, Moraes JCD, Campos CAHD, Araujo DV, Andrade ALSSD. Estimating the cost-effectiveness of pneumococcal conjugate vaccination in Brazil. Revista panamericana de salud publica. 2009;26:518–28. doi:10.1590/S1020-49892009001200007.
    1. Kupek E, Viertel I. Postintroduction study of cost-effectiveness of pneumococcal vaccine PCV10 from public sector payer’s perspective in the State of Santa Catarina, Brazil. Value Health Reg Issues. 2018;17:109–14. doi:10.1016/j.vhri.2017.12.008.
    1. Sartori AL, Minamisava R, Bierrenbach AL, Toscano CM, Afonso ET, Morais-Neto OL, Antunes JLF, Cristo EB, Andrade AL. Reduction in all-cause otitis media-related outpatient visits in children after PCV10 introduction in Brazil. PloS One. 2017;12(6):e0179222–e0179222. doi:10.1371/journal.pone.0179222.
    1. Gomez JA, Lopes de Abreu AJ, Caceres DC, Nieto J, Ortega-Barria E. Estimated annual health and cost impact of PHiD-CV immunization program in Brazil. Pediatr Infect Dis J. 2019;38:e260–e265. doi:10.1097/INF.0000000000002436.
    1. Pugh S, Wasserman M, Moffatt M, Marques S, Reyes JM, Prieto VA, Reijnders D, Rozenbaum MH, Laine J, Åhman H, et al. Estimating the impact of switching from a lower to higher valent pneumococcal conjugate vaccine in Colombia, Finland, and The Netherlands: a cost-effectiveness analysis. Infect Dis Ther. 2020;9(2):305–24. doi:10.1007/s40121-020-00287-5.
    1. Wasserman M, Palacios MG, Grajales AG, BaezRevueltas FB, Wilson M, McDade C, Farkouh R. Modeling the sustained use of the 13-valent pneumococcal conjugate vaccine compared to switching to the 10-valent vaccine in Mexico. Hum Vaccin Immunother. 2019;15(3):560–69. doi:10.1080/21645515.2018.1516491.
    1. Shafie AA, Ahmad N, Naidoo J, Foo CY, Wong C, Pugh S, Tan KK. Estimating the population health and economic impacts of introducing a pneumococcal conjugate vaccine in Malaysia- an economic evaluation. Hum Vaccin Immunother. 2020;16(7):1719–1727. doi:10.1080/21645515.2019.1701911.
    1. Wilson M, Wasserman M, Jadavi T, Postma M, Breton M-C, Peloquin F, Earnshaw S, McDade C, Sings H, Farkouh R. Clinical and economic impact of a potential switch from 13-Valent to 10-valent pneumococcal conjugate infant vaccination in Canada. Infect Dis Ther. 2018;7(3):353–71. doi:10.1007/s40121-018-0206-1.
    1. Ansaldi F, Pugh S, Amicizia D, Di Virgilio R, Trucchi C, Orsi A, Zollo A, Icardi G. Estimating the clinical and economic impact of switching from the 13-Valent pneumococcal conjugate vaccine (PCV13) to the 10-Valent pneumococcal conjugate vaccine (PCV10) in Italy. Pathogens (Basel, Switzerland). 2020;9:76.
    1. Pan American Health Organization (PAHO) . Surveillance Network System for Agents Responsible for Pneumonia and Bacterial Meningitis [Internet]. 2019.
    1. Andrade AL, Afonso ET, Minamisava R, Bierrenbach AL, Cristo EB, Morais-Neto OL, Policena GM, Domingues CMAS, Toscano CM. Direct and indirect impact of 10-valent pneumococcal conjugate vaccine introduction on pneumonia hospitalizations and economic burden in all age-groups in Brazil: A time-series analysis. PLoS One. 2017;12(9):e0184204. doi:10.1371/journal.pone.0184204.
    1. Novaes H, Sartori A, Soárez P. Hospitalization rates for pneumococcal disease in Brazil, 2004-2006. Revista De Saúde Pública. 2011;45:539–47. doi:10.1590/S0034-89102011005000028.
    1. Ministry of Health Brazil, Department of Health Care, Department of Regulation, Evaluation and Control . Hospital Information System (Sistema de Informações Hospitalares, SIH) of the National Unified Health System (Sistema Único de Saúde, SUS), SIH/SUS. Datasus; 2017.
    1. Ministry of Health Brazil. Executive Secretariat . Acquisition price of pneumococcal conjugate 10 valent vaccine by the Ministry of Health 2019.
    1. Ministry of Health Brazil . Executive Secretariat. Extract of bid number 14/2019. .
    1. Mittmann N, Trakas K, Risebrough N, Liu BA. Utility scores for chronic conditions in a community-dwelling population. PharmacoEconomics. 1999;15:369–76. doi:10.2165/00019053-199915040-00004.
    1. Bennett JE, Sumner W 2nd, Downs SM, Jaffe DM. Parents’ utilities for outcomes of occult bacteremia. Arch Pediatr Adolesc Med. 2000;154:43–48.
    1. Melegaro A, Edmunds WJ. Cost-effectiveness analysis of pneumococcal conjugate vaccination in England and Wales. Vaccine. 2004;22:4203–14. doi:10.1016/j.vaccine.2004.05.003.
    1. Cheng AK, Niparko JK. Cost-utility of the cochlear implant in adults: a meta-analysis. Arch Otolaryngology–head Neck Surg. 1999;125:1214–18. doi:10.1001/archotol.125.11.1214.
    1. Morrow A, De Wals P, Petit G, Guay M, Erickson LJ. The burden of pneumococcal disease in the Canadian population before routine use of the seven-valent pneumococcal conjugate vaccine. Can J Infect Dis Med Microbiol. 2007;18:121–27. doi:10.1155/2007/713576.
    1. Ministry of Health Brazil. Secretariat of Science, Technology and Strategic Inputs . Methodological guidelines: economic evaluation studies of health technologies. 2 ed. Department of Science and Technology, Brazil; 2014. p. 132.
    1. Song J-H. Advances in pneumococcal antibiotic resistance. Expert Rev Respir Med. 2013;7:491–98. doi:10.1586/17476348.2013.816572.
    1. Wasserman M, Sings HL, Jones D, Pugh S, Moffatt M, Farkouh R. Review of vaccine effectiveness assumptions used in economic evaluations of infant pneumococcal conjugate vaccine. Expert Rev Vaccines. 2018;17:71–78. doi:10.1080/14760584.2018.1409116.
    1. Trial to evaluate the safety and immunogenicity of a 20-valent pneumococcal conjugate vaccine in pneumococcal vaccine-naïve adult. ; 2018. .
    1. Rupp R, Hurley D, Grayson S, Li J, Nolan K, McFetridge RD, Hartzel J, Abeygunawardana C, Winters M, Pujar H, et al. A dose ranging study of 2 different formulations of 15-valent pneumococcal conjugate vaccine (PCV15) in healthy infants. Hum Vaccin Immunother. 2019;15:549–59. doi:10.1080/21645515.2019.1568159.
    1. Lo SW, Gladstone RA, van Tonder AJ, Lees JA, Du Plessis M, Benisty R, Givon-Lavi N, Hawkins PA, Cornick JE, Kwambana-Adams B, et al. Pneumococcal lineages associated with serotype replacement and antibiotic resistance in childhood invasive pneumococcal disease in the post-PCV13 era: an international whole-genome sequencing study. Lancet Infect Dis. 2019;19(7):759–69. doi:10.1016/S1473-3099(19)30297-X.
    1. Levy C, Ouldali N, Caeymaex L, Angoulvant F, Varon E, Cohen R. Diversity of serotype replacement after pneumococcal conjugate vaccine implementation in Europe. J Pediatr. 2019;213:252–253.e253. doi:10.1016/j.jpeds.2019.07.057.
    1. Varghese J, Chochua S, Tran T, Walker H, Li Z, Snippes Vagnone PM, Lynfield R, McGee L, Li Y, Metcalf BJ, et al. Multistate population and whole genome sequence-based strain surveillance of invasive pneumococci recovered in the USA during 2017. Clin Microbiol Infect. 2020;26(4):512.e511-512.e510. doi:10.1016/j.cmi.2019.09.008.

Source: PubMed

3
订阅