Nonstationary Pharmacokinetics of Caspofungin in ICU Patients

Agnieszka Borsuk-De Moor, Justyna Sysiak-Sławecka, Elżbieta Rypulak, Michał Borys, Paweł Piwowarczyk, Grzegorz Raszewski, Dariusz Onichimowski, Mirosław Czuczwar, Paweł Wiczling, Agnieszka Borsuk-De Moor, Justyna Sysiak-Sławecka, Elżbieta Rypulak, Michał Borys, Paweł Piwowarczyk, Grzegorz Raszewski, Dariusz Onichimowski, Mirosław Czuczwar, Paweł Wiczling

Abstract

Standard dosing of caspofungin in critically ill patients has been reported to result in lower drug exposure, which can lead to subtherapeutic 24-h area under the curve to MIC (AUC0-24/MIC) ratios. The aim of the study was to investigate the population pharmacokinetics of caspofungin in a cohort of 30 intensive care unit patients with a suspected invasive fungal infection, with a large proportion of patients requiring extracorporeal therapies, including extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT). Caspofungin was administered as empirical 70 mg antifungal therapy administered intravenously (i.v.) on the first day and at 50 mg i.v. on the consecutive days once daily, and the concentrations were measured after three subsequent doses. Population pharmacokinetic data were analyzed by nonlinear mixed-effects modeling. The pharmacokinetics of caspofungin was described by two-compartment model. A particular drift of the individual clearance (CL) and the volume of distribution of the central compartment (V1) with time was discovered and described by including three separate typical values of CL and V1 in the final model. The typical CL values at days 1, 2, and 3 were 0.563 liters/h (6.7% relative standard error [6.7%RSE]), 0.737 liters/h (6.1%RSE), and 1.01 liters/h (9.1%RSE), respectively. The change in parameters with time was not explained by any of the recorded covariates. Increasing clearance with subsequent doses was associated with a clinically relevant decrease in caspofungin exposure (>20%). The use of ECMO, CRRT, albumin concentration, and other covariates did not significantly affect caspofungin pharmacokinetics. Additional pharmacokinetic studies are urgently required to assess the possible lack of acquiring steady-state and suboptimal concentrations of the drug in critically ill patients. (This study has been registered at ClinicalTrials.gov under identifier NCT03399032.).

Keywords: caspofungin; population pharmacokinetics.

Copyright © 2020 Borsuk-De Moor et al.

Figures

FIG 1
FIG 1
Caspofungin concentration-time profiles for all patients in the study.
FIG 2
FIG 2
Distribution of height, weight, and age of patients in the analyzed population.
FIG 3
FIG 3
Summary of time-dependent covariates changing over days for the study population. The boxes cover the 5th to 95th percentile range, with a horizontal line denoting the median value.
FIG 4
FIG 4
Relationship between individual estimates of kappa (deviation of the individual estimate from the population mean on each occasion) for clearance and central compartment volume of distribution and time. The blue line represents the linear trend in the data.
FIG 5
FIG 5
(A) Individual estimates for ETA (deviation of the individual estimate from the population mean) in relation to time-independent continuous covariates. The lines indicate trends in the data (red, linear function; blue, loess smooth). (B) Individual estimates for ETA in relation to median values of time-dependent continuous covariates: SOFA score, PCT concentration, dialysis dose, and ultrafiltration rate. The lines indicate trends in the data (red, linear function; blue, loess smooth). (C) Individual estimates for ETA in relation to median values of time-dependent continuous covariates: elevated lung water index, cardiac output albumin concentration, and total serum protein concentration. The lines indicate trends in the data (red, linear function; blue, loess smooth). (D) Individual estimates for ETA in relation to categorical covariates.
FIG 5
FIG 5
(A) Individual estimates for ETA (deviation of the individual estimate from the population mean) in relation to time-independent continuous covariates. The lines indicate trends in the data (red, linear function; blue, loess smooth). (B) Individual estimates for ETA in relation to median values of time-dependent continuous covariates: SOFA score, PCT concentration, dialysis dose, and ultrafiltration rate. The lines indicate trends in the data (red, linear function; blue, loess smooth). (C) Individual estimates for ETA in relation to median values of time-dependent continuous covariates: elevated lung water index, cardiac output albumin concentration, and total serum protein concentration. The lines indicate trends in the data (red, linear function; blue, loess smooth). (D) Individual estimates for ETA in relation to categorical covariates.
FIG 6
FIG 6
Prediction-corrected visual predictive check (VPC) showing the simulation-based 90% confidence intervals around the 10th, 50th, and 90th percentiles of the pharmacokinetic data in the form of turquoise (50th) and violet (10th and 90th) areas. The corresponding percentiles from the observed data are plotted in black.
FIG 7
FIG 7
Probabilities of target attainment (PTA) of caspofungin based on preclinical targets for C. parapsilosis, C. glabrata, and C. albicans for the three clearance values estimated for three subsequent dosing occasions (first occasion in red, second occasion in green, and third occasion in blue) with colored area around the lines representing 90% confidence intervals based on bootstrap samples.

References

    1. Bader JC, Bhavnani SM, Andes DR, Ambrose PG. 2018. We can do better: a fresh look at echinocandin dosing. J Antimicrob Chemother 73:i44–i50. doi:10.1093/jac/dkx448.
    1. Udy AA, Roberts JA, Lipman J. 2013. Clinical implications of antibiotic pharmacokinetic principles in the critically ill. Intensive Care Med 39:2070–2082. doi:10.1007/s00134-013-3088-4.
    1. Borsuk-De Moor A, Rypulak E, Potręć B, Piwowarczyk P, Borys M, Sysiak J, Onichimowski D, Raszewski G, Czuczwar M, Wiczling P. 2018. Population pharmacokinetics of high-dose tigecycline in patients with sepsis or septic shock. Antimicrob Agents Chemother 62:e02273-17. doi:10.1128/AAC.02273-17.
    1. van der Elst KCM, Veringa A, Zijlstra JG, Beishuizen A, Klont R, Brummelhuis-Visser P, Uges DRA, Touw DJ, Kosterink JGW, van der Werf TS, Alffenaar J-W. 2017. Low caspofungin exposure in patients in the intensive care unit. Antimicrob Agents Chemother 61:e01582-16. doi:10.1128/AAC.01582-16.
    1. Pérez-Pitarch A, Ferriols-Lisart R, Aguilar G, Ezquer-Garín C, Belda FJ, Guglieri-López B. 2018. Dosing of caspofungin based on a pharmacokinetic/pharmacodynamic index for the treatment of invasive fungal infections in critically ill patients on continuous venovenous haemodiafiltration. Int J Antimicrob Agents 51:115–121. doi:10.1016/j.ijantimicag.2017.05.013.
    1. European Medicines Agency. 2019. Cancidas: EPAR, product information. European Medicines Agency, Amsterdam, Netherlands.
    1. Martial LC, Brüggemann RJM, Schouten JA, van Leeuwen HJ, van Zanten AR, de Lange DW, Muilwijk EW, Verweij PE, Burger DM, Aarnoutse RE, Pickkers P, Dorlo T. 2016. Dose reduction of caspofungin in intensive care unit patients with Child Pugh B will result in suboptimal exposure. Clin Pharmacokinet 55:723–733. doi:10.1007/s40262-015-0347-2.
    1. Weiler S, Seger C, Pfisterer H, Stienecke E, Stippler F, Welte R, Joannidis M, Griesmacher A, Bellmann R. 2013. Pharmacokinetics of caspofungin in critically ill patients on continuous renal replacement therapy. Antimicrob Agents Chemother 57:4053–4057. doi:10.1128/AAC.00335-13.
    1. Ruiz S, Papy E, Da Silva D, Nataf P, Massias L, Wolff M, Bouadma L. 2009. Potential voriconazole and caspofungin sequestration during extracorporeal membrane oxygenation. Intensive Care Med 35:183–184. doi:10.1007/s00134-008-1269-3.
    1. Spriet I, Annaert P, Meersseman P, Hermans G, Meersseman W, Verbesselt R, Willems L. 2009. Pharmacokinetics of caspofungin and voriconazole in critically ill patients during extracorporeal membrane oxygenation. J Antimicrob Chemother 63:767–770. doi:10.1093/jac/dkp026.
    1. Watt KM, Cohen-Wolkowiez M, Williams DC, Bonadonna DK, Cheifetz IM, Thakker D, Benjamin DK, Brouwer K. 2017. Antifungal extraction by the extracorporeal membrane oxygenation circuit. J Extra Corpor Technol 49:150–159.
    1. Shekar K, Roberts JA, Mcdonald CI, Ghassabian S, Anstey C, Wallis SC, Mullany DV, Fung YL, Fraser JF. 2015. Protein-bound drugs are prone to sequestration in the extracorporeal membrane oxygenation circuit: results from an ex vivo study. Crit Care 19:164. doi:10.1186/s13054-015-0891-z.
    1. Shekar K, Roberts JA, Mcdonald CI, Fisquet S, Barnett AG, Mullany DV, Ghassabian S, Wallis SC, Fung YL, Smith MT, Fraser JF. 2012. Sequestration of drugs in the circuit may lead to therapeutic failure during extracorporeal membrane oxygenation. Crit Care 16:R194. doi:10.1186/cc11679.
    1. Andes D, Diekema DJ, Pfaller MA, Bohrmuller J, Marchillo K, Lepak A. 2010. In vivo comparison of the pharmacodynamic targets for echinocandin drugs against Candida species. Antimicrob Agents Chemother 54:2497–2506. doi:10.1128/AAC.01584-09.
    1. Würthwein G, Cornely OA, Trame MN, Vehreschild JJ, Vehreschild M, Farowski F, Müller C, Boos J, Hempel G, Hallek M, Groll AH. 2013. Population pharmacokinetics of escalating doses of caspofungin in a phase II study of patients with invasive aspergillosis. Antimicrob Agents Chemother 57:1664–1671. doi:10.1128/AAC.01912-12.
    1. Roger C, Wallis SC, Muller L, Saissi G, Lipman J, Brüggemann RJ, Lefrant J-Y, Roberts JA. 2017. Caspofungin population pharmacokinetics in critically ill patients undergoing continuous veno-venous haemofiltration or haemodiafiltration. Clin Pharmacokinet 56:1057–1068. doi:10.1007/s40262-016-0495-z.
    1. Muilwijk EW, Schouten JA, van Leeuwen HJ, van Zanten ARH, de Lange DW, Colbers A, Verweij PE, Burger DM, Pickkers P, Brüggemann R. 2014. Pharmacokinetics of caspofungin in ICU patients. J Antimicrob Chemother 69:3294–3299. doi:10.1093/jac/dku313.
    1. Stone JA, Holland SD, Wickersham PJ, Sterrett A, Schwartz M, Bonfiglio C, Hesney M, Winchell GA, Deutsch PJ, Greenberg H, Hunt TL, Waldman SA. 2002. Single- and multiple-dose pharmacokinetics of caspofungin in healthy men. Antimicrob Agents Chemother 46:739–745. doi:10.1128/aac.46.3.739-745.2002.
    1. Stone JA, Xu X, Winchell GA, Deutsch PJ, Pearson PG, Migoya EM, Mistry GC, Xi L, Miller A, Sandhu P, Singh R, deLuna F, Dilzer SC, Lasseter KC. 2004. Disposition of caspofungin: role of distribution in determining pharmacokinetics in plasma. Antimicrob Agents Chemother 48:815–823. doi:10.1128/aac.48.3.815-823.2004.
    1. Aguilar G, Ferriols R, Lozano A, Ezquer C, Carbonell JA, Jurado A, Carrizo J, Serralta F, Puig J, Navarro D, Alos M, Belda FJ. 2017. Optimal doses of caspofungin during continuous venovenous hemodiafiltration in critically ill patients. Crit Care 21:17. doi:10.1186/s13054-016-1594-9.

Source: PubMed

3
订阅