The Role of Focused Echocardiography in Pediatric Intensive Care: A Critical Appraisal

Heloisa Amaral Gaspar, Samira Saady Morhy, Heloisa Amaral Gaspar, Samira Saady Morhy

Abstract

Echocardiography is a key tool for hemodynamic assessment in Intensive Care Units (ICU). Focused echocardiography performed by nonspecialist physicians has a limited scope, and the most relevant parameters assessed by focused echocardiography in Pediatric ICU are left ventricular systolic function, fluid responsiveness, cardiac tamponade and pulmonary hypertension. Proper ability building of pediatric emergency care physicians and intensivists to perform focused echocardiography is feasible and provides improved care of severely ill children and thus should be encouraged.

Figures

Figure 1
Figure 1
Calculation of left ventricular fractional shortening by the M mode. (a) Parasternal short-axis view in a patient with normal ejection fraction. (b) Parasternal long-axis view in a patient with viral myocarditis and cardiogenic shock, with reduced ejection fraction. EDD: left ventricle end-diastolic diameter; ESD: left ventricle end-systolic diameter; RV: right ventricle. FS = EDD − ESD/EDD × 100.
Figure 2
Figure 2
Stroke volume (SV) calculation. (a) Measurement of LV outflow tract diameter (LVOTD) using the parasternal long-axis view, and (b) use of pulsed Doppler for the measurement of velocity-time integral (VTI), as obtained in the 5-chamber apical view. Cardiac output (CO) = SV × HR; SV = VTI × LVOT area, where LVOT area =  π(LVOT  diameter/2)2.
Figure 3
Figure 3
M mode echocardiography from subcostal view in a five-year-old patient in septic shock for urinary tract infection under mechanical ventilation, with sustained hypotension after volume expansion with 60 mL/kg of saline solution. Bedside echocardiography showed significant respiratory changes in IVC diameter, which, along with other clinical and monitoring data, suggested that fluid resuscitation should be maintained. dIVC = 90%, where dIVC = (Dmax − Dmin)/Dmin  × 100.
Figure 4
Figure 4
Cardiac tamponade with large pericardial effusion and diastolic collapse of the right ventricle (arrow). LA: left atrium; LV: left ventricle; PE: pericardial effusion. RA: right atrium; RV: right ventricle.
Figure 5
Figure 5
(a) Four-chamber apical view demonstrating normal heart. (b) Significant right chambers dilatation with straightened ventricular septum plus small pericardial effusion. LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle.
Figure 6
Figure 6
Newborn under invasive mechanical ventilation for hypoxemia in the first day of life. Apical view showing tricuspid regurgitation on color Doppler in blue (a) and on continuous wave Doppler (b). RV-RA gradient of 82 mmHg and the pulmonary artery systolic pressure is estimated at 92 mmHg (RV-RA gradient pressure added to the RA pressure).

References

    1. Vieillard-Baron A., Prin S., Chergui K., Dubourg O., Jardin F. Hemodynamic instability in sepsis: bedside assessment by Doppler echocardiography. American Journal of Respiratory and Critical Care Medicine. 2003;168(11):1270–1276. doi: 10.1164/rccm.200306-816cc.
    1. Spencer K. T. Focused cardiac ultrasound: where do we stand? Current Cardiology Reports. 2015;17, article 14 doi: 10.1007/s11886-015-0567-y.
    1. Colreavy F. B., Donovan K., Lee K. Y., Weekes J. Transesophageal echocardiography in critically ill patients. Critical Care Medicine. 2002;30(5):989–996.
    1. Croft L. B., Duvall W. L., Goldman M. E. A pilot study of the clinical impact of hand-carried cardiac ultrasound in the medical clinic. Echocardiography. 2006;23(6):439–446. doi: 10.1111/j.1540-8175.2006.00240.x.
    1. Manasia A. R., Nagaraj H. M., Kodali R. B., et al. Feasibility and potential clinical utility of goal-directed transthoracic echocardiography performed by noncardiologist intensivists using a small hand-carried device (SonoHeart) in critically ill patients. Journal of Cardiothoracic and Vascular Anesthesia. 2005;19(2):155–159. doi: 10.1053/j.jvca.2005.01.023.
    1. Ranjit S., Aram G., Kissoon N., et al. Multimodal monitoring for hemodynamic categorization and management of pediatric septic shock: a pilot observational study. Pediatric Critical Care Medicine. 2014;15(1):e17–e26. doi: 10.1097/pcc.0b013e3182a5589c.
    1. Vincent J.-L., De Backer D. Circulatory shock. The New England Journal of Medicine. 2013;369(18):1726–1734. doi: 10.1056/nejmra1208943.
    1. Klugman D., Berger J. T. Echocardiography as a hemodynamic monitor in critically ill children. Pediatric Critical Care Medicine. 2011;12(4):S50–S54. doi: 10.1097/pcc.0b013e3182211c17.
    1. Mayo P. H., Beaulieu Y., Doelken P., et al. American College of Chest Physicians/La Société de Réanimation de Langue Française statement on competence in critical care ultrasonography. Chest. 2009;135(4):1050–1060. doi: 10.1378/chest.08-2305.
    1. Labovitz A. J., Noble V. E., Bierig M., et al. Focused cardiac ultrasound in the emergent setting: a consensus statement of the American society of Echocardiography and American College of Emergency Physicians. Journal of the American Society of Echocardiography. 2010;23(12):1225–1230. doi: 10.1016/j.echo.2010.10.005.
    1. Randazzo M. R., Snoey E. R., Levitt M. A., Binder K. Accuracy of emergency physician assessment of left ventricular ejection fraction and central venous pressure using echocardiography. Academic Emergency Medicine. 2003;10(9):973–977. doi: 10.1197/S1069-6563(03)00317-8.
    1. DeCara J. M., Lang R. M., Koch R., Bala R., Penzotti J., Spencer K. T. The use of small personal ultrasound devices by internists without formal training in echocardiography. European Journal of Echocardiography. 2003;4(2):141–147. doi: 10.1053/euje.2002.0617.
    1. Pershad J., Myers S., Plouman C., et al. Bedside limited echocardiography by the emergency physician is accurate during evaluation of the critically ill patient. Pediatrics. 2004;114(6):e667–e671. doi: 10.1542/peds.2004-0881.
    1. Spurney C. F., Sable C. A., Berger J. T., Martin G. R. Use of a hand-carried ultrasound device by critical care physicians for the diagnosis of pericardial effusions, decreased cardiac function, and left ventricular enlargement in pediatric patients. Journal of the American Society of Echocardiography. 2005;18(4):313–319. doi: 10.1016/j.echo.2004.10.016.
    1. Vignon P., Dugard A., Abraham J., et al. Focused training for goal-oriented hand-held echocardiography performed by noncardiologist residents in the intensive care unit. Intensive Care Medicine. 2007;33(10):1795–1799. doi: 10.1007/s00134-007-0742-8.
    1. Melamed R., Sprenkle M. D., Ulstad V. K., Herzog C. A., Leatherman J. W. Assessment of left ventricular function by intensivists using hand-held echocardiography. Chest. 2009;135(6):1416–1420. doi: 10.1378/chest.08-2440.
    1. Vignon P., Mücke F., Bellec F., et al. Basic critical care echocardiography: validation of a curriculum dedicated to noncardiologist residents. Critical Care Medicine. 2011;39(4):636–642. doi: 10.1097/ccm.0b013e318206c1e4.
    1. Longjohn M., Wan J., Joshi V., Pershad J. Point-of-care echocardiography by pediatric emergency physicians. Pediatric Emergency Care. 2011;27(8):693–696. doi: 10.1097/pec.0b013e318226c7c7.
    1. Royse C. F., Haji D. L., Faris J. G., Veltman M. G., Kumar A., Royse A. G. Evaluation of the interpretative skills of participants of a limited transthoracic echocardiography training course (H.A.R.T.scan course) Anaesthesia and Intensive Care. 2012;40(3):498–504.
    1. Caronia J., Kutnick R., Sarzynski A., Panagopoulos G., Mahdavi R., Mina B. Focused transthoracic echocardiography performed and interpreted by medical residents in the critically Ill. ICU Director. 2013;4(4):177–182. doi: 10.1177/1944451613488798.
    1. Tanzola R. C., Walsh S., Hopman W. M., Sydor D., Arellano R., Allard R. V. Brief report: focused transthoracic echocardiography training in a cohort of Canadian anesthesiology residents: a pilot study. Canadian Journal of Anesthesia. 2013;60(1):32–37. doi: 10.1007/s12630-012-9811-8.
    1. Gaspar H. A., Morhy S. S., Lianza A. C., et al. Focused cardiac ultrasound: a training course for pediatric intensivists and emergency physicians. BMC Medical Education. 2014;14, article 25 doi: 10.1186/1472-6920-14-25.
    1. Amiel J.-B., Grümann A., Lhéritier G., et al. Assessment of left ventricular ejection fraction using an ultrasonic stethoscope in critically ill patients. Critical Care. 2012;16, article R29 doi: 10.1186/cc11198.
    1. Razi R., Estrada J. R., Doll J., Spencer K. T. Bedside hand-carried ultrasound by internal medicine residents versus traditional clinical assessment for the identification of systolic dysfunction in patients admitted with decompensated heart failure. Journal of the American Society of Echocardiography. 2011;24(12):1319–1324. doi: 10.1016/j.echo.2011.07.013.
    1. Ünlüer E. E., Karagöz A., Akoğlu H., Bayata S. Visual estimation of bedside echocardiographic ejection fraction by emergency physicians. Western Journal of Emergency Medicine. 2014;15(2):221–226. doi: 10.5811/westjem.2013.9.16185.
    1. Margossian R., Schwartz M. L., Prakash A., et al. Comparison of echocardiographic and cardiac magnetic resonance imaging measurements of functional single ventricular volumes, mass, and ejection fraction (from the Pediatric Heart Network Fontan Cross-Sectional Study) American Journal of Cardiology. 2009;104(3):419–428. doi: 10.1016/j.amjcard.2009.03.058.
    1. Gazit A. Z., Cooper D. S. Emerging technologies. Pediatric Critical Care Medicine. 2011;12(4):S55–S61. doi: 10.1097/PCC.0b013e3182211c2b.
    1. Cecconi M., de Backer D., Antonelli M., et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Medicine. 2014;40(12):1795–1815. doi: 10.1007/s00134-014-3525-z.
    1. Dellinger R. P., Levy M. M., Rhodes A., et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Medicine. 2013;39(2):165–228. doi: 10.1007/s00134-012-2769-8.
    1. Dinh V. A., Ko H. S., Rao R., et al. Measuring cardiac index with a focused cardiac ultrasound examination in the ED. American Journal of Emergency Medicine. 2012;30(9):1845–1851. doi: 10.1016/j.ajem.2012.03.025.
    1. Boyd J. H., Forbes J., Nakada T.-A., Walley K. R., Russell J. A. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Critical Care Medicine. 2011;39(2):259–265. doi: 10.1097/ccm.0b013e3181feeb15.
    1. Raux O., Spencer A., Fesseau R., et al. Intraoperative use of transoesophageal doppler to predict response to volume expansion in infants and neonates. British Journal of Anaesthesia. 2012;108(1):100–107. doi: 10.1093/bja/aer336.
    1. Lukito V., Djer M. M., Pudjiadi A. H., Munasir Z. The role of passive leg raising to predict fluid responsiveness in pediatric intensive care unit patients. Pediatric Critical Care Medicine. 2012;13(3):e155–e160. doi: 10.1097/pcc.0b013e3182388ab3.
    1. Durand P., Chevret L., Essouri S., Haas V., Devictor D. Respiratory variations in aortic blood flow predict fluid responsiveness in ventilated children. Intensive Care Medicine. 2008;34(5):888–894. doi: 10.1007/s00134-008-1021-z.
    1. Michard F., Teboul J.-L. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121(6):2000–2008. doi: 10.1378/chest.121.6.2000.
    1. Gan H., Cannesson M., Chandler J. R., Ansermino J. M. Predicting fluid responsiveness in children: a systematic review. Anesthesia & Analgesia. 2013;117(6):1380–1392. doi: 10.1213/ane.0b013e3182a9557e.
    1. Haines E. J., Chiricolo G. C., Aralica K., et al. Derivation of a pediatric growth curve for inferior vena caval diameter in healthy pediatric patients: brief report of initial curve development. Critical Ultrasound Journal. 2012;4, article 12 doi: 10.1186/2036-7902-4-12.
    1. Feissel M., Michard F., Faller J.-P., Teboul J.-L. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Medicine. 2004;30(9):1834–1837. doi: 10.1007/s00134-004-2233-5.
    1. Barbier C., Loubières Y., Schmit C., et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Medicine. 2004;30(9):1740–1746. doi: 10.1007/s00134-004-2259-8.
    1. Mandeville J. C., Colebourn C. L. Can transthoracic echocardiography be used to predict fluid responsiveness in the critically ill patient? A systematic review. Critical Care Research and Practice. 2012;2012:9. doi: 10.1155/2012/513480.513480
    1. Choi D. Y., Kwak H. J., Park H. Y., Kim Y. B., Choi C. H., Lee J. Y. Respiratory variation in aortic blood flow velocity as a predictor of fluid responsiveness in children after repair of ventricular septal defect. Pediatric Cardiology. 2010;31(8):1166–1170. doi: 10.1007/s00246-010-9776-8.
    1. Byon H.-J., Lim C.-W., Lee J.-H., et al. Prediction of fluid responsiveness in mechanically ventilated children undergoing neurosurgery. British Journal of Anaesthesia. 2013;110(4):586–591. doi: 10.1093/bja/aes467.
    1. Feissel M., Michard F., Mangin I., Ruyer O., Faller J.-P., Teboul J.-L. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119(3):867–873. doi: 10.1378/chest.119.3.867.
    1. de Souza Neto E. P., Grousson S., Duflo F., et al. Predicting fluid responsiveness in mechanically ventilated children under general anaesthesia using dynamic parameters and transthoracic echocardiography. British Journal of Anaesthesia. 2011;106(6):856–864. doi: 10.1093/bja/aer090.
    1. Renner J., Broch O., Duetschke P., et al. Prediction of fluid responsiveness in infants and neonates undergoing congenital heart surgery. British Journal of Anaesthesia. 2012;108(1):108–115. doi: 10.1093/bja/aer371.
    1. Otto C. M. Fundamentos de Ecocardiografia Clínica. 4th. São Paulo, Brazil: Elsevier; 2009.
    1. Goodman A., Perera P., Mailhot T., Mandavia D. The role of bedside ultrasound in the diagnosis of pericardial effusion and cardiac tamponade. Journal of Emergencies, Trauma and Shock. 2012;5(1):72–75. doi: 10.4103/0974-2700.93118.
    1. Tsang T. S. M., Oh J. K., Seward J. B. Diagnosis and management of cardiac tamponade in the era of echocardiography. Clinical Cardiology. 1999;22(7):446–452. doi: 10.1002/clc.4960220703.
    1. Tsang T. S. M., Oh J. K., Seward J. B., Tajik A. J. Diagnostic value of echocardiography in cardiac tamponade. Herz. 2000;25(8):734–740. doi: 10.1007/pl00001991.
    1. Tsang T. S. M., Enriquez-Sarano M., Freeman W. K., et al. Consecutive 1127 therapeutic echocardiographically guided pericardiocenteses: clinical profile, practice patterns, and outcomes spanning 21 years. Mayo Clinic Proceedings. 2002;77(5):429–436. doi: 10.1016/s0025-6196(11)62211-8.
    1. Jain A., McNamara P. J. Persistent pulmonary hypertension of the newborn: advances in diagnosis and treatment. Seminars in Fetal and Neonatal Medicine. 2015;20(4):262–271. doi: 10.1016/j.siny.2015.03.001.
    1. Ofori-Amanfo G., Cheifetz I. M. Pediatric postoperative cardiac care. Critical Care Clinics. 2013;29(2):185–202. doi: 10.1016/j.ccc.2013.01.003.

Source: PubMed

3
订阅