Antioxidant Supplementation: A Linchpin in Radiation-Induced Enteritis

Mumtaz Anwar, Shabeer Ahmad, Reyhan Akhtar, Akhtar Mahmood, Safrun Mahmood, Mumtaz Anwar, Shabeer Ahmad, Reyhan Akhtar, Akhtar Mahmood, Safrun Mahmood

Abstract

Radiation enteritis is one of the most feared complications of abdominal and pelvic regions. Thus, radiation to abdominal or pelvic malignancies unavoidably injures the intestine. Because of rapid cell turnover, the intestine is highly sensitive to radiation injury, which is the limiting factor in the permissible dosage of irradiation. Bowel injuries such as fistulas, strictures, and chronic malabsorption are potentially life-threatening complications and have an impact on patient quality of life. The incidence of radiation enteritis is increasing because of the current trend of combined chemotherapy and radiation. The consequences of radiation damage to the intestine may result in considerable morbidity and even mortality. The observed effects of ionizing radiation are mediated mainly by oxygen-free radicals that are generated by its action on water and are involved in several steps of signal transduction cascade, leading to apoptosis. The oxyradicals also induce DNA strand breaks and protein oxidation. An important line of defense against free radical damage is the presence of antioxidants. Therefore, administration of antioxidants may ameliorate the radiation-induced damage to the intestine.

Keywords: DNA damage; apoptosis; brush border enzymes; expression; radiation-induced enteritis.

Conflict of interest statement

Declaration of Conflicting Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Figures

Figure 1.
Figure 1.
This is adapted from Nguyen et al and is self-modified. It shows the postulated mechanism of radiation enteritis and other conditions characterized by excessive fibrosis: hyperstimulation of transforming growth factor β1. It also describes the mechanism how hydroxyl radical production and other injuries lead to hyperstimulation of TGF-β1 and finally to clinical manifestations. TGF-β1 indicates transforming growth factor-β1.
Figure 2.
Figure 2.
This is modified by us which shows the model representation of the molecular biology of radiation effect and DNA damage leading to cancer. This also depicts how different exposures to cellular DNA lead to its damage and hence carcinogenesis.
Figure 3.
Figure 3.
Adapted from Campbell and Reece and self-modified. This show different phases of cell cycle, like, G1, M, G2, and S and the check points schematically.
Figure 4.
Figure 4.
Proposed model of radiation-induced enteritis and its protection using antioxidants and can be explained as: when radiation is given to small intestine, then radiation-induced enteritis is observed. After that various manifestations could be observed as DNA damage, physical changes such as body weight, mortality, deregulated levels of brush border enzymes, namely, sucrose, lactase, Alkaline phosphatise (ALP), Gamma-Glutamyl Transpeptidase (γ-GTP), and Leucine aminopeptidase (LAP), and altered expression of marker genes/proteins (ie, of apoptotic machinery genes/proteins) were observed. Upon antioxidant supplementation, the effect of radiation-induced enteritis could be reversed especially with that of vitamin E that proved to be very potent in ameliorating the radiation-induced damage, hence protection.

References

    1. Anwar M, Nanda N, Bhatia A, Akhtar R, Mahmood S. Effect of antioxidant supplementation on digestive enzymes in radiation induced intestinal damage in rats. Int J Radiat Biol. 2013;89(12):1061–1069. doi:10.3109/09553002.2013.825062.
    1. Bismar MM, Sinicrope FA. Radiation enteritis. Curr Gastroenterol Rep. 2002;4(5):361–365.
    1. Bye A, Ose T, Kaasa S. The effect of a low fat, low lactose diet on nutritional status during pelvic radiotherapy. Clin Nutr. 1993;12(2):89–95.
    1. Bye A, Kaasa S, Ose T, Sundfør K, Tropé C. The influence of low fat, low lactose diet on diarrhoea during pelvic radiotherapy. Clin Nutr. 1992;11(3):147–153.
    1. Leadon SA, Dunn AB, Ross CE. A novel DNA repair response is induced in human cells exposed to ionizing radiation at the G1/S-phase border. Radiat Res. 1996;146(2):123–130.
    1. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.
    1. Potten CS, Booth C. The role of radiation-induced and spontaneous apoptosis in the homeostasis of the gastrointestinal epithelium: a brief review. Comp Biochem Physiol B Biochem Mol Biol. 1997;118(3):473–478.
    1. Ortmann EK, Mayerhofer T, Getoff N, Kodym R. Effect of antioxidant vitamins on radiation-induced apoptosis in cells of a human lymphoblastic cell line. Radiat Res. 2004;161(1):48–55.
    1. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118–126. doi:10.4103/0973-7847.70902.
    1. Stacey R, Green JT. Radiation-induced small bowel disease: latest developments and clinical guidance. Ther Adv Chronic Dis. 2014;5(1):15–29. doi:10.1177/2040622313510730.
    1. Kountouras J, Zavos C. Recent advances in the management of radiation colitis. World J Gastroenterol. 2008;14(48):7289–7301.
    1. Yeoh E, Horowitz M, Russo A, et al. Effect of pelvic irradiation on gastrointestinal function: a prospective longitudinal study. Am J Med. 1993;95(4):397–406.
    1. Dukowicz AC, Lacy BE, Levine GM. Small intestinal bacterial overgrowth: a comprehensive review. Gastroenterol Hepatol (N Y). 2007;3(2):112–122.
    1. Walsh D. Deep tissue traumatism from roentgen ray exposure. Br Med J. 1897;2(1909):272–273.
    1. Sharma B, Pandey D, Chauhan V, Gupta D, Mokta J, Thakur SS. Radiation Proctitis. JIACM. 2005;6(2):146–151.
    1. Henson C. Chronic radiation proctitis: issues surrounding delayed bowel dysfunction post-pelvic radiotherapy and an update on medical treatment. Therap Adv Gastroenterol. 2010;3(6):359–365. doi:10.1177/1756283X10371558.
    1. Waohsmann F, Earth G. “Die Bewegungsbestrahlung” Stuttgart, Germany: G. Thieme; 1953.
    1. Kinsella TJ, Bloomer WD, Lavin PT, Knapp RC. Stage II endometrial carcinoma: 10-year follow-up of combined radiation and surgical treatment. Gynecol Oncol. 1980;10(3):290–297.
    1. American Cancer Society. Cancer Treatment and Survivorship Facts & Figures 2014-2015. Atlanta, GA: American Cancer Society; 2014.
    1. Gelfand M. The letters of Dr. Neil macvicar of blantyre. Cent Afr J Med. 1968;14(12):284–286.
    1. Reis ED, Vine AJ, Heimann T. Radiation damage to the rectum and anus: pathophysiology, clinical features and surgical implications. Colorectal Dis. 2002;4(1):2–12.
    1. Trier JS, Browning TH. Morphologic response of the mucosa of human small intestine to x-ray exposure. J Clin Invest. 1966;45(2):194–204.
    1. Tarpila S. Morphological and functional response of human small intestine to ionizing irradiation. Scand J Gastroenterol Suppl. 1971;12:1–52.
    1. Langberg CW, Hauer-Jensen M, Sung CC, Kane CJ. Expression of fibrogenic cytokines in rat small intestine after fractionated irradiation. Radiother Oncol. 1994;32(1):29–36.
    1. Yudelev M, Kuten A, Tatcher M, et al. Correlations of dose and time-dose-fractionation factors (TDF) with treatment results and side effects in cancer of the uterine cervix. Gynecol Oncol. 1986;23(3):310–315.
    1. Roswit B, Malsky Sj, Reid Cb, Amato C, Jones H, Spreckels C. A critical survey of radiation dosimeters for in-vivo dosimetry during clinical and experimental radiotherapy. Radiology. 1963;80:292–294.
    1. Schillinger H. Sonographic screening studies in pregnancy. Ultraschall Med. 1984;5(6):281–286.
    1. Morgenstern L, Hart M, Lugo D, Friedman NB. Changing aspects of radiation enteropathy. Arch Surg. 1985;120(11):1225–1228.
    1. Allen-Mersh TG, Wilson EJ, Hope-Stone HF, Mann CV. Has the incidence of radiation-induced bowel damage following treatment of uterine carcinoma changed in the last 20 years. J R Soc Med. 1986;79(7):387–390.
    1. Mesurolle B, Qanadli SD, Merad M, et al. Unusual radiologic findings in the thorax after radiation therapy. Radiographics. 2000;20(1):67–81.
    1. Nguyen NP, Antoine JE, Dutta S, Karlsson U, Sallah S. Current concepts in radiation enteritis and implications for future clinical trials. Cancer. 2002;95(5):1151–1163.
    1. Painter RB. Effect of caffeine on DNA synthesis in irradiated and unirradiated mammalian cells. J Mol Biol. 1980;143(3):289–301.
    1. Anderson RE, Williams WL, Tokuda S. Effect of low-dose irradiation upon T cell subsets involved in the response of primed A/J mice to SaI cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1988;53(1):103–118.
    1. Tuchmann L, Engelking C. Cancer-related diarrhea In: Gates RA, Fink RM, eds. Oncology Nursing Secrets. 2nd ed Philadelphia, PA: Hanley and Belfus; 2001:310–322.
    1. Naidu MU, Ramana GV, Rani PU, Mohan IK, Suman A, Roy P. Chemotherapy-induced and/or radiation therapy-induced oral mucositis--complicating the treatment of cancer. Neoplasia. 2004;6(5):423–431.
    1. Do NL, Nagle D, Poylin VY. Radiation proctitis: current strategies in management. Gastroenterol Res Pract. 2011;2011:917941 doi:10.1155/2011/917941.
    1. Viacheslavovich BV, Pontecorvo GB. Interaction of Particles and Radiation with Matter. Berlin, Germany: Springer; 1997. Print.
    1. Rastogi RP, Richa Kumar A, Tyagi MB, Sinha RP. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids. 2010;2010:592980. doi:10.4061/2010/592980.
    1. Mamillapalli R, Haimovitz R, Ohad M, Shinitzky M. Enhancement and inhibition of snake venom phosphodiesterase activity by lysophospholipids. FEBS Lett. 1998;436(2):256–258.
    1. Bernhard EJ, McKenna WG, Muschel RJ. Radiosensitivity and the cell cycle. Cancer J Sci Am. 1999;5(4):194–204.
    1. Jones BA. Decreasing polypharmacy in clients most at risk. AACN Clin Issues. 1997;8(4):627–634.
    1. Lopaczynski W, Zieisd SH. Antioxidants, programmed cell death and cancer. Nutr Res. 2001;21(1–2):295–307.
    1. Bojarski C, Gitter AH, Bendfeldt K, et al. Permeability of human HT-29/B6 colonic epithelium as a function of apoptosis. J Physiol. 2001;535(pt 2):541–552.
    1. Potten CS, Grant HK. The relationship between ionizing radiation-induced apoptosis and stem cells in the small and large intestine. Br J Cancer. 1998;78(8):993–1003.
    1. Clarke WN, Munro S, Brownstein S, Agapitos P, Hughes-Benzie R. Ocular findings in acromesomelic dysplasia. Am J Ophthalmol. 1994;118(6):797–804.
    1. Huang EH, Pollack A, Levy L, et al. Late rectal toxicity: dose-volume effects of conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2002;54(5):1314–1321.
    1. Okamura T, Suga T, Iwaya Y, et al. Helicobacter pylori-negative primary rectal MALT lymphoma: complete remission after radiotherapy. Case Rep Gastroenterol. 2012;6(2):319–327. doi:10.1159/000339461.
    1. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004;18(7):816–827.
    1. Barendsen Gw, Walter Hm, Fowler Jf, Bewley Dk. Effects of different ionizing radiations on human cells in tissue culture. III. Experiments with cyclotron-accelerated alpha-particles and deuterons. Radiat Res. 1963;18:106–119.
    1. Elkind MM, Utsumi H, Ben-Hur E. Are single or multiple mechanisms involved in radiation-induced mammalian cell killing? Br J Cancer Suppl. 1987;8:24–31.
    1. Anderson RJ. Radiocontrast nephrotoxicity. West J Med. 1985;142(5):685–686.
    1. Corre I, Guillonneau M, Paris F. Membrane signaling induced by high doses of ionizing radiation in the endothelial compartment. relevance in radiation toxicity. Int J Mol Sci. 2013;14(11):22678–22696. doi:10.3390/ijms141122678.
    1. Sakaguchi K, Herrera JE, Saito S, et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 1998;12(18):2831–2841.
    1. Gridley DS, Williams JR, Slater JM. Low-dose/low-dose-rate radiation: a feasible strategy to improve cancer radiotherapy. Cancer Ther. 2005;3:105–130.
    1. Yarnold J. Molecular aspects of cellular responses to radiotherapy. Radiother Oncol. 1997;44(1):1–7.
    1. Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327(1-2):48–60. doi:10.1016/j.canlet.2011.12.012.
    1. Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014;6(245):245ra93.
    1. Stobbe CC, Park SJ, Chapman JD. The radiation hypersensitivity of cells at mitosis. Int J Radiat Biol. 2002;78(12):1149–1157.
    1. Hagemann RF, Schaer JC. On the mechanism of modification of radiation effect by dimethyl sulfoxide. Experientia. 1971;27(3):319–321.
    1. Iliakis G, Wang Y, Guan J, Wang H. DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene. 2003;22(37):5834–5847.
    1. Campbell NA, Reece JB. Mechanical analogy for the cell cycle control system. Biology. Ed. Beth Wilbur. 6th ed San Francisco: Benjamin Cummings; 2002:226.
    1. Chashoo G, Saxena AK. Targetting cdks in cancer: an overview and new insights. J Cancer Sci Ther. 2014;6:(12):488-496. doi:10.4172/1948-5956.1000313.
    1. Bartek J, Lukas J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol. 2001;13(6):738–747.
    1. Lakin ND, Jackson SP. Regulation of p53 in response to DNA damage. Oncogene. 1999;18(53):7644–7655.
    1. He G, Zhang YW, Lee JH, et al. AMP-activated protein kinase induces p53 by phosphorylating MDMX and inhibiting its activity [Published online ahead of print November 4, 2013] Mol Cell Biol. 2014;34(2):148–157. doi:10.1128/MCB.00670-13.
    1. Amundson SA, Myers TG, Fornace AJ., Jr Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress. Oncogene. 1998;17(25):3287–3299.
    1. Rich T, Allen RL, Wyllie AH. Defying death after DNA damage. Nature. 2000;407(6805):777–783.
    1. Shi Y. Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci. 2004;13(8):1979–1987.
    1. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407(6805):770–776.
    1. Crawford ED, Seaman JE, Barber AE, 2nd, et al. Conservation of caspase substrates across metazoans suggests hierarchical importance of signaling pathways over specific targets and cleavage site motifs in apoptosis [Published online ahead of print Auguest 24, 2012] Cell Death Differ. 2012;19(12):2040–2048. doi:10.1038/cdd.2012.99.
    1. Mukae N, Yokoyama H, Yokokura T, Sakoyama Y, Nagata S. Activation of the innate immunity in Drosophila by endogenous chromosomal DNA that escaped apoptotic degradation. Genes Dev. 2002;16(20):2662–2671.
    1. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013;5(4):a008656 doi:10.1101/cshperspect.a008656.
    1. Xu G, Shi Y. Apoptosis signaling pathways and lymphocyte homeostasis. Cell Res. 2007;17(9):759–771.
    1. Dickens LS, Powley IR, Hughes MA, MacFarlane M. The ‘complexities’ of life and death: death receptor signalling platforms [Published online ahead of print April 17, 2012] Exp Cell Res. 2012;318(11):1269–1277. doi:10.1016/j.yexcr.2012.04.005.
    1. Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ. Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol. 1997;139(5):1281–1292.
    1. van Empel VP, De Windt LJ. Myocyte hypertrophy and apoptosis: a balancing act. Cardiovasc Res. 2004;63(3):487–499.
    1. Moujalled D, Weston R, Anderton H, Ninnis R, Goel P, Coley A. Cyclic-AMP-dependent protein kinase a regulates apoptosis by stabilizing the BH3-only protein bim [Published online ahead of print December 10, 2010] EMBO Rep. 2011;12(1):77–83. doi:10.1038/embor.2010.190.
    1. Reed JC, Jurgensmeier JM, Matsuyama S. Bcl-2 family proteins and mitochondria. Biochim Biophys Acta. 1998;1366(1-2):127–137.
    1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Programmed Cell Death (Apoptosis). Molecular Biology of the Cell. 4th ed New York: Garland Science; 2002.
    1. Bujak M, Frangogiannis NG. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling [Published online ahead of print October 7, 2006] Cardiovasc Res. 2007;74(2):184–195.
    1. Konkel JE, Chen W. Balancing acts: the role of TGF-β in the mucosal immune system. Trends Mol Med. 2011;17(11):668–676.
    1. Boerma M, Wang J, Sridharan V, Herbert JM, Hauer-Jensen M. Pharmacological induction of transforming growth factor-beta1 in rat models enhances radiation injury in the intestine and the heart [Published online ahead of print 2013] PLoS One. 2013;8(7):e70479 doi:10.1371/journal.pone.0070479.
    1. Hamama S, Gilbert-Sirieix M, Vozenin MC, Delanian S. Radiation-induced enteropathy: molecular basis of pentoxifylline-vitamin E anti-fibrotic effect involved TGF-β1 cascade inhibition. Radiother Oncol. 2012;105(3):305–312.
    1. Weidinger A, Kozlov AV. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction. Biomolecules. 2015;5(2):472–484.
    1. Liu RM, Desai LP. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol. 2015;6:565–577.
    1. Jain M, Rivera S, Monclus EA, et al. Mitochondrial reactive oxygen species regulate transforming growth factor-β signaling. J Biol Chem. 2013;288(2):770–777.
    1. Tsai IC, Pan ZC, Cheng HP, Liu CH, Lin BT, Jiang MJ. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence. J Mol Cell Cardiol. 2016;98:18–27.
    1. Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis. 2000;21(3):485–495.
    1. Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 2008;9(5):402–412. doi:10.1038/nrm2395.
    1. Pucci B, Kasten M, Giordano A. Cell cycle and apoptosis. Neoplasia. 2000;2(4):291–299.
    1. Gartel AL, Tyner AL. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther. 2002;1(8):639–649.
    1. Merritt AJ, Allen TD, Potten CS, Hickman JA. Apoptosis in small intestinal epithelial from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after gamma-irradiation. Oncogene. 1997;14(23):2759–2766.
    1. Ravizza R, Gariboldi MB, Passarelli L, Monti E. Role of the p53/p21 system in the response of human colon carcinoma cells to Doxorubicin. BMC Cancer. 2004;4:92.
    1. Moore JV. The ‘gastrointestinal syndrome’ after chemotherapy: inferences from mouse survival time, and from histologically- and clonogenically-defined cell death in intestinal crypts. Br J Cancer Suppl. 1986;7:16–19.
    1. Somosy Z, Horváth G, Telbisz A, Réz G, Pálfia Z. Morphological aspects of ionizing radiation response of small intestine. Micron. 2002;33(2):167–178.
    1. Lee CL, Blum JM, Kirsch DG. Role of p53 in regulating tissue response to radiation by mechanisms independent of apoptosis. Transl Cancer Res. 2013;2(5):412–421.
    1. Kumar V, Abbas AK, Fausto N, Mitchell R. Robbins Basic Pathology; 8th Edition, Elsevier/Saunders. Neoplasia: Cell Cycle; 2007. 188–198. Chap 6.
    1. Tanaka T. Colorectal carcinogenesis: Review of human and experimental animal studies. J Carcinog. 2009;8:5.
    1. Koumenis C, Alarcon R, Hammond E, et al. Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol. 2001;21(4):1297–1310.
    1. Puthalakath H, Huang DC, O’Reilly LA, King SM, Strasser A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell. 1999;3(3):287–296.
    1. Wang Z, Sun Y. Targeting p53 for Novel Anticancer Therapy. Transl Oncol. 2010;3(1):1–12.
    1. Hua G, Thin TH, Feldman R, et al. Crypt base columnar stem cells in small intestines of mice are radioresistant [Published online ahead of print July 27,2012] Gastroenterology. 2012;143(5):1266–1276. doi:10.1053/j.gastro.2012.07.106.
    1. Potten CS, Gandara R, Mahida YR, Loeffler M, Wright NA. The stem cells of small intestinal crypts: where are they? [Published online ahead of print September 28, 2009] Cell Prolif. 2009;42(6):731–750. doi:10.1111/j.1365-2184.2009.00642.x.
    1. Potten CS, Chwalinski S, Swindell R, Palmer M. The spatial organization of the hierarchical proliferative cells of the crypts of the small intestine into clusters of ‘synchronized’ cells. Cell Tissue Kinet. 1982;15(4):351–370.
    1. Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration [Published online ahead of print December 11, 2013] Nat Rev Mol Cell Biol. 2014;15(1):19–33. doi:10.1038/nrm3721.
    1. Potten CS, Owen G, Roberts SA. The temporal and spatial changes in cell proliferation within the irradiated crypts of the murine small intestine. Int J Radiat Biol. 1990;57(1):185–199.
    1. Potten CS, Taylor Y, Hendry JH. The doubling time of regenerating clonogenic cells in the crypts of the irradiated mouse small intestine. Int J Radiat Biol. 1988;54(6):1041–1051.
    1. Garau MM, Calduch AL, López EC. Radiobiology of the acute radiation syndrome. 2011;16(4):123–130. doi: org/10.1016/j.rpor.2011.06.001.
    1. Saha S, Bhanja P, Liu L, et al. TLR9 agonist protects mice from radiation-induced gastrointestinal syndrome. PLoS One. 2012;7(1):e29357.
    1. Khan WB, Shui C, Ning S, Knox SJ. Enhancement of murine intestinal stem cell survival after irradiation by keratinocyte growth factor. Radiat Res. 1997;148(3):248–253.
    1. Paris F, Fuks Z, Kang A, et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science. 2001;293(5528):293–7.
    1. Riehl TE, Newberry RD, Lorenz RG, Stenson WF. TNFR1 mediates the radioprotective effects of lipopolysaccharide in the mouse intestine [Publisher online ahead of print October 2, 2003] Am J Physiol Gastrointest Liver Physiol. 2004;286(1):G166–G173.
    1. Fukata M, Chen A, Klepper A, et al. Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology. 2006;131(3):862–877.
    1. Rahman K. Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging. 2007;2(2):219–236.
    1. Rahal A, Kumar A, Singh V, et al. Oxidative stress, prooxidants, and antioxidants: the interplay [Published online ahead of print January 23, 2014] Biomed Res Int. 2014;2014:761264 doi:10.1155/2014/761264.
    1. Malik A, Afaq F, Sarfaraz S, Adhami VM, Syed DN, Mukhtar H. Pomegranate fruit juice for chemoprevention and chemotherapy of prostate cancer [Published online ahead of print September 28, 2005] Proc Natl Acad Sci U S A. 2005;102(41):14813–14818.
    1. Kapkac M, Erikoglu M, Tuncyurek P, et al. Fiber enriched diets and radiation induced injury of the gut. Nutr Res. January 2003;23(1):77–83.
    1. Fairfield KM, Fletcher RH. Vitamins for chronic disease prevention in adults: scientific review. JAMA. 2002;287(23):3116–3126.
    1. Jiang Q, Christen S, Shigenaga MK, Ames BN. Gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr. 2001;74(6):714–722.
    1. Bera S, De Rosa V, Rachidi W, Diamond AM. Does a role for selenium in DNA damage repair explain apparent controversies in its use in chemoprevention? [Published online ahead of print November 30, 2012] Mutagenesis. 2013;28(2):127–134. doi:10.1093/mutage/ges064.
    1. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P. Redox regulation of cell survival. Antioxid Redox Signal. 2008;10(8):1343–1374. doi:10.1089/ars.2007.1957.
    1. Indran IR, Tufo G, Pervaiz S, Brenner C. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells [Published online ahead of print March 29, 2011] Biochim Biophys Acta. 2011;1807(6):735–745. doi:10.1016/j.bbabio.2011.03.010.
    1. Ueta E, Yoneda K, Kimura T, et al. Mn-SOD antisense upregulates in vivo apoptosis of squamous cell carcinoma cells by anticancer drugs and gamma-rays regulating expression of the BCL-2 family proteins, COX-2 and p21. Int J Cancer. 2001;94(4):545–550.
    1. Richardson DM, Pysek P, Rejmánek M, Barbour MG, Panetta FD, West CJ. Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib. 2000;6:93–107.
    1. Burstein HJ, Gelber S, Guadagnoli E, Weeks JC. Use of alternative medicine by women with early-stage breast cancer. N Engl J Med. 1999;340(22):1733–1739.
    1. Lesperance ML, Olivotto IA, Forde N, et al. Mega-dose vitamins and minerals in the treatment of non-metastatic breast cancer: an historical cohort study. Breast Cancer Res Treat. 2002;76(2):137–143.
    1. Sies H, Stahl W, Sundquist AR. Antioxidant functions of vitamins. Vitamins E and C, beta-carotene, and other carotenoids. Ann N Y Acad Sci. 1992;669(30):7–20.
    1. Miller AL. Should antioxidants be used in cancer therapy? Altern Med Rev. 1999;4(5):303.
    1. Labriola D, Livingston R. Possible interactions between dietary antioxidants and chemotherapy. Oncology (Williston Park). 1999;13(7):1003–1008; discussion 1008, 1011-1012.
    1. Lamson DW, Brignall MS. Antioxidants and cancer therapy II: quick reference guide. Altern Med Rev. 2000;5(2):152–163.
    1. Lamson DW, Brignall MS. Antioxidants in cancer therapy; their actions and interactions with oncologic therapies. Altern Med Rev. 1999;4(5):304–329.
    1. Moding EJ, Kastan MB, Kirsch DG. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov. 2013;12(7):526–542. doi:10.1038/nrd4003.
    1. EL-Beltagi HS, Mohamed HI. Reactive oxygen species, lipid peroxidation and antioxidative defense mechanism. Not Bot Horti Agrobo. 2013;41(1):44–57.
    1. McKersie BD, Leshem YY. Stress and Stress Coping in Cultivated Plants. Netherlands: Springer; 1994. doi:10.1007/978-94-017-3093-8. ISBN: 978-90-481-4400-6 (Print) 978-94-017-3093-8 (Online).
    1. Szarka A, Bánhegyi G, Asard H. The inter-relationship of ascorbate transport, metabolism and mitochondrial, plastidic respiration [Published online ahead of print Feb 13, 2013] Antioxid Redox Signal. 2013;19(9):1036–1044. doi:10.1089/ars.2012.5059.
    1. Upston JM, Terentis AC, Stocker R. Tocopherol-mediated peroxidation of lipoproteins: implications for vitamin E as apotential antiatherogenic supplement. FASEB J. 1999;13(9):977–994.
    1. Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more [Published online ahead of print March 31, 2007] Free Radic Biol Med. 2007;43(1):4–15.
    1. Thöny B, Auerbach G, Blau N. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J. 2000;347(pt 1):1–16.
    1. Berbée M, Fu Q, Kumar KS, Hauer-Jensen M. Novel strategies to ameliorate radiation injury: a possible role for tetrahydrobiopterin. Curr Drug Targets. 2010;11(11):1366–1374.
    1. Pathak R, Pawar SA, Fu Q, Gupta PK, Berbée M, Garg S. Characterization of transgenic Gfrp knock-in mice: implications for tetrahydrobiopterin in modulation of normal tissue radiation responses. Antioxid Redox Signal. 2014;20(9):1436–1446.
    1. Ghosh SP, Kulkarni S, Hieber K, et al. Gamma-tocotrienol, a tocol antioxidant as a potent radioprotector. Int J Radiat Biol. 2009;85(7):598–606.
    1. Pathak R, Shao L, Ghosh SP, et al. Thrombomodulin contributes to gamma tocotrienol-mediated lethality protection and hematopoietic cell recovery in irradiated mice. PLoS One. 2015;10(4):e0122511.
    1. Patacsil D, Tran AT, Cho YS, et al. Gamma-tocotrienol induced apoptosis is associated with unfolded protein response in human breast cancer cells. J Nutr Biochem. 2012;23(1):93–100.
    1. Williams JP, Hernady E, Johnston CJ, et al. Effect of administration of lovastatin on the development of late pulmonary effects after whole-lung irradiation in a murine model. Radiat Res. 2004;161(5):560–567.
    1. Kucuk O, Ottery F. Dietary supplements during cancer treatment. Oncology [Issues Supplement]. 2002;17:24.
    1. Jaakkola K, Lähteenmäki P, Laakso J, Harju E, Tykkä H, Mahlberg K. Treatment with antioxidant and other nutrients in combination with chemotherapy and irradiation in patients with small-cell lung cancer. Anticancer Res. 1992;12(3):599–606.
    1. Meyer F, Bairati I, Fortin A, et al. Interaction between antioxidant vitamin supplementation and cigarette smoking during radiation therapy in relation to long-term effects on recurrence and mortality: a randomized trial among head and neck cancer patients. Int J Cancer. 2008;122(7):1679–1683.
    1. Vasin MV, Ushakov IB, Kovtun VY, Komarova SN, Semenova LA, Galkin AA. Pharmacological analysis of the therapeutic effect of radioprotectors cystamine and indralin in the capacity of radiomitigators. Bull Exp Biol Med. 2017;162(4):466–469.
    1. Gosselin-Acomb TK. Principles of radiation therapy In: Yarbro CH, Goodman M, Frogge MH, eds. Cancer nursing: Principles and practice. 6th ed Sudbury: Jones and Bardett Publishers; 2005:230–249.
    1. Citrin D, Cotrim AP, Hyodo F, et al. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist. 2010;15(4):360–371.
    1. Kim K, Pollard JM, Norris AJ, et al. High-throughput screening identifies two classes of antibiotics as radioprotectors: tetracyclines and fluoroquinolones. Clin Cancer Res. 2009;15(23):7238–7245.

Source: PubMed

3
订阅