Effectiveness of an individualized home-based physical activity program in surgery-free non-endarterectomized asymptomatic stroke patients: a study protocol for the PACAPh interventional randomized trial

Mathilde Mura, Emeraude Rivoire, Leila Dehina-Khenniche, Michèle Weiss-Gayet, Bénédicte Chazaud, Camille Faes, Philippe Connes, Anne Long, Chantal L Rytz, Pauline Mury, Lidia Delrieu, Etienne Gouraud, Marine Bordet, Nellie Della Schiava, Patrick Lermusiaux, Matthieu Arsicot, Antoine Millon, Vincent Pialoux, Mathilde Mura, Emeraude Rivoire, Leila Dehina-Khenniche, Michèle Weiss-Gayet, Bénédicte Chazaud, Camille Faes, Philippe Connes, Anne Long, Chantal L Rytz, Pauline Mury, Lidia Delrieu, Etienne Gouraud, Marine Bordet, Nellie Della Schiava, Patrick Lermusiaux, Matthieu Arsicot, Antoine Millon, Vincent Pialoux

Abstract

Background: Carotid atherosclerotic plaques remain silent until their rupture, which may lead to detrimental ischemic events such as strokes. This is due, in part, to intraplaque hemorrhages (IPH) and the resulting inflammatory processes, which may promote carotid plaque vulnerability. Currently, the benefits of carotid endarterectomy remain unclear for asymptomatic patients. Interestingly, the completion of physical activity (PA) may have beneficial effects; however, the paucity of current data warrants robust longitudinal interventions. We therefore aim to study the effects of a 6-month longitudinal personalized home-based PA program on IPH, biological, and inflammatory markers in asymptomatic stroke patients.

Methods: Eighty patients (≥ 18 years old) will be recruited for the Physical Activity and Carotid Atherosclerotic Plaque Hemorrhage (PACAPh) clinical trial from the Hospices Civils de Lyon. Patients will be eligible if they present with carotid stenosis ≥ 50% and are asymptomatic from any ischemic events for at least 6 months. Recruited patients will be randomized into either a PA or a control group, and assessed at baseline and after 6 months. At both time points, all patients will be assessed using magnetic resonance imaging to assess IPH, blood sampling to measure inflammatory markers and monocytic phenotyping, PA and sedentary behavior questionnaires, 6-min walking test, and maximal isometric quadricep contraction test. The randomized PA intervention will consist of reaching a daily walking step goal individually tailored to each patient. Steps will be collected using a wirelessly connected wristband. The number of steps completed by individuals in the PA group will be re-evaluated bimonthly to encourage walking habits.

Discussion: The PACAPh study is the first of its kind representing a feasible, easily accessible therapeutic strategy for asymptomatic stroke patients. We hypothesize that the personalized home-based PA program will reduce IPH and modulate inflammatory and biological parameters in patients presenting with carotid plaques. If the results of the PACAPh study prove to be beneficial on such health parameters, the implementation of such kind of intervention in the daily treatment of these patients would be an advantageous and cost-effective practice to adopt globally.

Trial registration: This study has been approved by the National Ethics Committee (IDRCB:2019-A01543-54/SI:19.06.21.40640). ClinicalTrials.gov NCT04053166.

Keywords: Atherosclerosis; Intraplaque hemorrhage; Monocyte phenotype; Physical activity; Physical fitness; Randomized controlled trial.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Flowchart of the PACAPh study

References

    1. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart Disease and Stroke Statistics—2021 update: a report from the American Heart Association. Circulation. 2021;143:254–743.
    1. North American Symptomatic Carotid Endarterectomy Trial Collaborators Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med. 1991;325(7):445–453. doi: 10.1056/NEJM199108153250701.
    1. Warlow C, Farrell B, Fraser A, Sandercock P, Slattery J. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST) Lancet. 1998;351(9113):1379–1387.
    1. Naylor AR. Time to rethink management strategies in asymptomatic carotid artery disease. Nat Rev Cardiol. 2011;9(2):116–124.
    1. Aboyans V, Ricco J-B, Bartelink M-LEL, Björck M, Brodmann M, Cohnert T, Collet JP, Czerny M, de Carlo M, Debus S, Espinola-Klein C, Kahan T, Kownator S, Mazzolai L, Naylor AR, Roffi M, Röther J, Sprynger M, Tendera M, Tepe G, Venermo M, Vlachopoulos C, Desormais I, Document Reviewers, Widimsky P, Kolh P, Agewall S, Bueno H, Coca A, de Borst GJ, Delgado V, Dick F, Erol C, Ferrini M, Kakkos S, Katus HA, Knuuti J, Lindholt J, Mattle H, Pieniazek P, Piepoli MF, Scheinert D, Sievert H, Simpson I, Sulzenko J, Tamargo J, Tokgozoglu L, Torbicki A, Tsakountakis N, Tuñón J, Vega de Ceniga M, Windecker S, Zamorano JL. Editor’s Choice – 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS) Eur J Vasc Endovasc Surg. 2018;55(3):305–368. doi: 10.1016/j.ejvs.2017.07.018.
    1. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999;340(2):115–126.
    1. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–325.
    1. Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–874.
    1. Sluimer JC, Kolodgie FD, Bijnens APJJ, Maxfield K, Pacheco E, Kutys B, et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol. 2009;53(17):1517–1527.
    1. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25(10):2054–2061.
    1. Haskard DO, Boyle JJ, Evans PC, Mason JC, Randi AM. Cytoprotective signaling and gene expression in endothelial cells and macrophages-lessons for atherosclerosis. Microcirc (New York, NY 1994) 2013;20(3):203–216.
    1. Chistiakov DA, Orekhov AN, Bobryshev YV. Contribution of neovascularization and intraplaque haemorrhage to atherosclerotic plaque progression and instability. Acta Physiol (Oxf) 2015;213(3):539–553.
    1. Michel J-B, Martin-Ventura JL, Nicoletti A, Ho-Tin-Noé B. Pathology of human plaque vulnerability: mechanisms and consequences of intraplaque haemorrhages. Atherosclerosis. 2014;234(2):311–319.
    1. Kumar A, Kar S, Fay WP. Thrombosis, physical activity, and acute coronary syndromes. J Appl Physiol. 2011;111(2):599–605.
    1. Mury P, Chirico EN, Mura M, Millon A, Canet-Soulas E, Pialoux V. Oxidative stress and inflammation, key targets of atherosclerotic plaque progression and vulnerability: potential impact of physical activity. Sports Med. 2018;48(12):2725–2741.
    1. Mathur N, Pedersen BK. Exercise as a mean to control low-grade systemic inflammation. Mediators Inflamm. 2008;2008 Available from: .
    1. Gardner AW, Montgomery PS, Zhao YD, Silva-Palacios F, Ungvari Z, Csiszar A, et al. Association between daily walking and antioxidant capacity in patients with symptomatic peripheral artery disease. J Vasc Surg. 2017;65(6):1762–1768.
    1. Mury P, Mura M, Della-Schiava N, Chanon S, Vieille-Marchiset A, Nicaise V, et al. Association between physical activity and sedentary behaviour on carotid atherosclerotic plaques: an epidemiological and histological study in 90 asymptomatic patients. Br J Sports Med. 2020;54(8):469–474.
    1. Mury P, Millon A, Mura M, Nicaise V, Pialoux V. Impact of physical activity and sedentary behavior on biological risk factors of carotid atherosclerotic plaque instability. Atherosclerosis. 2017;263:e150.
    1. Mura M, Weiss-Gayet M, Chazaud B, Millon A, Pialoux V. 3ème Congrès de Physiologie et de Biologie Intégrative. Acta Physiologica. 2019. Associations between monocyte phenotype and physical activity.
    1. Bowles DK, Laughlin MH. Mechanism of beneficial effects of physical activity on atherosclerosis and coronary heart disease. J Appl Physiol (Bethesda, Md 1985) 2011;111(1):308–310.
    1. Cox K, Burke V, Beilin L, Phillips M. The effects a home-based physical activity program on barrier and program-specific self-efficacy of older adults – the MOVES Study. J Sci Med Sport. 2017;20:e23.
    1. Smith KM, McKelvie RS, Thorpe KE, Arthur HM. Six-year follow-up of a randomised controlled trial examining hospital versus home-based exercise training after coronary artery bypass graft surgery. Heart. 2011;97(14):1169–1174.
    1. Neubeck L, Freedman SB, Clark AM, Briffa T, Bauman A, Redfern J. Participating in cardiac rehabilitation: a systematic review and meta-synthesis of qualitative data. Eur J Prev Cardiol. 2012;19:494–503 Available from: .
    1. Inglis SC, Clark RA, McAlister FA, Ball J, Lewinter C, Cullington D, et al. Structured telephone support or telemonitoring programmes for patients with chronic heart failure. In: Cochrane Database of Systematic Reviews. Wiley; 2010. Available from: .
    1. Jones M, Jolly K, Raftery J, GYH L, Greenfield S. “DNA” may not mean “did not participate”: a qualitative study of reasons for non-adherence at home-and centre-based cardiac rehabilitation. Fam Pract. 2007;24(4):343–357.
    1. Worringham C, Rojek A, Stewart I. Development and feasibility of a smartphone, ECG and GPS based system for remotely monitoring exercise in cardiac rehabilitation. PLoS One. 2011;6(2):e14669.
    1. Rawstorn JC, Gant N, Direito A, Beckmann C, Maddison R. Telehealth exercise-based cardiac rehabilitation: a systematic review and meta-analysis. Heart. 2016;102:1183–1192.
    1. Gresham G, Schrack J, Gresham LM, Shinde AM, Hendifar AE, Tuli R, et al. Wearable activity monitors in oncology trials: current use of an emerging technology. Contemp Clin Trials. 2018;64:13–21. Available from: .
    1. Haberlin C, O’Dwyer T, Mockler D, Moran J, O’Donnell DM, Broderick J. The use of eHealth to promote physical activity in cancer survivors: a systematic review. Supportive Care Cancer. 2018;26:3323–3336.
    1. Argent R, Daly A, Caulfield B. Patient involvement with home-based exercise programs: can connected health interventions influence adherence? JMIR mHealth uHealth. 2018;6(3):e8518.
    1. Kanejima Y, Kitamura M, Izawa KP. Self-monitoring to increase physical activity in patients with cardiovascular disease: a systematic review and meta-analysis. Aging Clin Exp Res. 2019;31(2):163–173.
    1. Delrieu L, Pérol O, Fervers B, Friedenreich C, Vallance J, Febvey-Combes O, et al. A personalized physical activity program with activity trackers and a mobile phone app for patients with metastatic breast cancer: protocol for a single-arm feasibility trial. JMIR Res Protoc. 2018;7(8):e10487.
    1. Yuan C, Mitsumori LM, Beach KW, Maravilla KR. Carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology. 2001;221(2):285–299.
    1. Baskurt OK, Boynard M, Cokelet GC, Connes P, Cooke BM, Forconi S, et al. New guidelines for hemorheological laboratory techniques. Clin Hemorheol Microcirc. 2009;42(2):75–97.
    1. Aleman MM, Holle LA, Stember KG, Devette CI, Monroe DM, Wolberg AS. Cystamine preparations exhibit anticoagulant activity. Miyata T, editor. PLoS One. 2015;10(4):e0124448.
    1. Byrnes JR, Duval C, Wang Y, Hansen CE, Ahn B, Mooberry MJ, Clark MA, Johnsen JM, Lord ST, Lam WA, Meijers JCM, Ni H, Ariëns RAS, Wolberg AS. Factor XIIIa-dependent retention of red blood cells in clots is mediated by fibrin α-chain crosslinking. Blood. 2015;126(16):1940–1948. doi: 10.1182/blood-2015-06-652263.
    1. Faes C, Ilich A, Sotiaux A, Sparkenbaugh EM, Henderson MW, Buczek L, et al. Red blood cells modulate structure and dynamics of venous clot formation in sickle cell disease. J Am Soc Hematol. 2019;133(23):2529–2541.
    1. Whiting D, JA DN. TEG and ROTEM: technology and clinical applications. Am J Hematol. 2014;89(2):228–232.
    1. Westerblad H, Place N, Yamada T. Mechanisms of skeletal muscle weakness. Adv Exp Med Biol. 2010;682:279–296. doi: 10.1007/978-1-4419-6366-6_16.
    1. Jones PR, Pearson J. Anthropometric determination of leg fat and muscle plus bone volumes in young male and female adults. J Physiol. 1969;204(2):63P–66P.
    1. Petersen NT, Taylor JL, Butler JE, Gandevia SC. Depression of activity in the corticospinal pathway during human motor behavior after strong voluntary contractions. J Neurosci. 2003;23(22):7974–7980.
    1. Andreacci JL, LeMura LM, Cohen SL, Urbansky EA, Chelland SA, Von Duvillard SP. The effects of frequency of encouragement on performance during maximal exercise testing. J Sports Sci. 2002;20(4):345–352.
    1. Moffatt RJ, Chitwood LF, Biggerstaff KD. The influence of verbal encouragement during assessment of maximal oxygen uptake. J Sports Med Phys Fitness. 1994;34(1):45–49.
    1. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111–117.
    1. Borg G, Hassmén P, Lagerström M. Perceived exertion related to heart rate and blood lactate during arm and leg exercise. Eur J Appl Physiol Occup Physiol. 1987;56(6):679–685.
    1. De Virgilio C, Toosie K, Arnell T, Lewis RJ, Donayre CE, Baker JD, et al. Asymptomatic carotid artery stenosis screening in patients with lower extremity atherosclerosis: a prospective study. In: Annals of Vascular Surgery. Elsevier Inc.; 1997. p 374–7. Available from: .
    1. Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, Diehm C, et al. Measurement and interpretation of the Ankle-Brachial Index: a scientific statement from the American Heart Association. Circulation. 2012;126(24):2890–909. Available from: .
    1. Vinkers DJ, Stek ML, Van Der Mast RC, De Craen AJM, Le Cessie S, Jolles J, et al. Generalized atherosclerosis, cognitive decline, and depressive symptoms in old age. Neurology. 2005;65(1):107–112.
    1. Chen WH, Jin W, Lyu PY, Liu Y, Li R, Hu M, et al. Carotid atherosclerosis and cognitive impairment in nonstroke patients. Chin Med J (Engl) 2017;130(19):2375–2379. doi: 10.4103/0366-6999.215331.
    1. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–198.
    1. Crum RM, Anthony JC, Bassett SS, Folstein MF. Population-based norms for the Mini-Mental State Examination by age and educational level. J Am Med Assoc. 1993;269(18):2386–2391.
    1. Rosenberg DE, Norman GJ, Wagner N, Patrick K, Calfas KJ, Sallis JF. Reliability and validity of the Sedentary Behavior Questionnaire (SBQ) for adults. J Phys Act Health. 2010;7(6):697–705.
    1. Armstrong T, Bull F. Development of the World Health Organization Global Physical Activity Questionnaire (GPAQ) J Public Health (Bangkok). 2006;14(2):66–70.
    1. Bull FC, Maslin TS, Armstrong T. Global physical activity questionnaire (GPAQ): nine country reliability and validity study. J Phys Act Health. 2009;6(6):790–804.
    1. Gusto G, Vol S, Bedouet M, Leglu C, Decou P, Beslin E, et al. Good reproducibility and validity of a self-administered questionnaire evaluating adherence to the French national nutrition and health program recommendations. Press Medicale (Paris, Fr 1983) 2013;42(7–8):e245–e258.
    1. England CY, Andrews RC, Jago R, Thompson JL. A systematic review of brief dietary questionnaires suitable for clinical use in the prevention and management of obesity, cardiovascular disease and type 2 diabetes. Eur J Clin Nutr. 2015;69(9):977–1003. doi: 10.1038/ejcn.2015.6.
    1. Devlin NJ, Krabbe PFM. The development of new research methods for the valuation of EQ-5D-5L. Eur J Health Econ. 2013;14(1):1–3.
    1. Durnin JV, Womersley J. Total body fat, calculated from body density, and its relationship to skinfold thickness in 571 people aged 12-72 years - PubMed. 1973.
    1. Song P, Fang Z, Wang H, Cai Y, Rahimi K, Zhu Y, et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Glob Health. 2020;8(5):e721–9. Available from: .
    1. Yakeu G, Butcher L, Isa S, Webb R, Roberts AW, Thomas AW, et al. Low-intensity exercise enhances expression of markers of alternative activation in circulating leukocytes: roles of PPARγ and Th2 cytokines. Atherosclerosis. 2010;212(2):668–673.
    1. Brevetti G, Sirico G, Lanero S, De Maio JI, Laurenzano E, Giugliano G. The prevalence of hypoechoic carotid plaques is greater in peripheral than in coronary artery disease and is related to the neutrophil count. J Vasc Surg. 2008;47(3):523–529.
    1. Mura M, Della Schiava N, Long A, Chirico EN, Pialoux V, Millon A. Carotid intraplaque haemorrhage: pathogenesis, histological classification, imaging methods and clinical value. Ann Transl Med. 2020;8(19):1273. doi: 10.21037/atm-20-1974.
    1. Redfern J, Ellis ER, Briffa T, Freedman SB. High risk-factor level and low risk-factor knowledge in patients not accessing cardiac rehabilitation after acute coronary syndrome. Med J Aust. 2007;186(1):21–25.
    1. Blair J, Corrigall H, Angus NJ, Thompson DR, Leslie S. Home versus hospital-based cardiac rehabilitation: a systematic review. Rural Remote Health. 2011;11(2):190–206.
    1. Anderson L, Sharp GA, Norton RJ, Dalal H, Dean SG, Jolly K, et al. Home-based versus centre-based cardiac rehabilitation. Cochrane Database Syst Rev. 2017, 2017; Available from: .
    1. Rajati F, Sadeghi M, Feizi A, Sharifirad G, Hasandokht T, Mostafavi F. Self-efficacy strategies to improve exercise in patients with heart failure: a systematic review. ARYA Atheroscler. 2014;10(6):319–333.

Source: PubMed

3
订阅