CARDIOKIN1: Computational Assessment of Myocardial Metabolic Capability in Healthy Controls and Patients With Valve Diseases

Nikolaus Berndt, Johannes Eckstein, Iwona Wallach, Sarah Nordmeyer, Marcus Kelm, Marieluise Kirchner, Leonid Goubergrits, Marie Schafstedde, Anja Hennemuth, Milena Kraus, Tilman Grune, Philipp Mertins, Titus Kuehne, Hermann-Georg Holzhütter, Nikolaus Berndt, Johannes Eckstein, Iwona Wallach, Sarah Nordmeyer, Marcus Kelm, Marieluise Kirchner, Leonid Goubergrits, Marie Schafstedde, Anja Hennemuth, Milena Kraus, Tilman Grune, Philipp Mertins, Titus Kuehne, Hermann-Georg Holzhütter

Abstract

Background: Many heart diseases can result in reduced pumping capacity of the heart muscle. A mismatch between ATP demand and ATP production of cardiomyocytes is one of the possible causes. Assessment of the relation between myocardial ATP production (MVATP) and cardiac workload is important for better understanding disease development and choice of nutritional or pharmacologic treatment strategies. Because there is no method for measuring MVATP in vivo, the use of physiology-based metabolic models in conjunction with protein abundance data is an attractive approach.

Method: We developed a comprehensive kinetic model of cardiac energy metabolism (CARDIOKIN1) that recapitulates numerous experimental findings on cardiac metabolism obtained with isolated cardiomyocytes, perfused animal hearts, and in vivo studies with humans. We used the model to assess the energy status of the left ventricle of healthy participants and patients with aortic stenosis and mitral valve insufficiency. Maximal enzyme activities were individually scaled by means of protein abundances in left ventricle tissue samples. The energy status of the left ventricle was quantified by the ATP consumption at rest (MVATP[rest]), at maximal workload (MVATP[max]), and by the myocardial ATP production reserve, representing the span between MVATP(rest) and MVATP(max).

Results: Compared with controls, in both groups of patients, MVATP(rest) was increased and MVATP(max) was decreased, resulting in a decreased myocardial ATP production reserve, although all patients had preserved ejection fraction. The variance of the energetic status was high, ranging from decreased to normal values. In both patient groups, the energetic status was tightly associated with mechanic energy demand. A decrease of MVATP(max) was associated with a decrease of the cardiac output, indicating that cardiac functionality and energetic performance of the ventricle are closely coupled.

Conclusions: Our analysis suggests that the ATP-producing capacity of the left ventricle of patients with valvular dysfunction is generally diminished and correlates positively with mechanical energy demand and cardiac output. However, large differences exist in the energetic state of the myocardium even in patients with similar clinical or image-based markers of hypertrophy and pump function. Registration: URL: https://www.clinicaltrials.gov; Unique identifiers: NCT03172338 and NCT04068740.

Keywords: energy metabolism; heart valve diseases; mathematical model; metabolism; proteomics.

Figures

Figure 1.
Figure 1.
Reaction scheme of the metabolic model. Arrows symbolize reactions and transport processes between compartments. A, Glycogen metabolism, (B) glycolysis, (C) oxidative pentose phosphate pathway in the endoplasmic reticulum and cytosol, (D) nonoxidative pentose phosphate pathway, (E) triglyceride synthesis, (F) synthesis and degradation of lipid droplets, (G) tricarbonic acid cycle, (H) respiratory chain and oxidative phosphorylation, (I) β-oxidation of fatty acids, (J) ketone body utilization, (K) glutamate metabolism, (L) mitochondrial electrophysiology (membrane transport of ions), and (M) utilization of branched-chain amino acids. Small cylinders and cubes symbolize ion channels and ion transporters. Double arrows indicate reversible reactions, which, according to the value of the thermodynamic equilibrium constant and cellular concentrations of their reactants, may proceed in both directions. Reactions are labeled by the short names of the catalyzing enzyme or membrane transporter given in the small boxes attached to the reactions arrow. Metabolites are denoted by their short names. Full names and kinetic rate laws of reaction rates are outlined in Supplement S1. Full names of metabolites and a comparison of experimentally determined and calculated cellular metabolite concentrations are given in Table S1.
Figure 2.
Figure 2.
Simulated and measured myocardial substrate uptake rates in vivo. A, Substrate uptake rates at rest and at moderate pacing (50% maxVo2). (sim) Uptake rates were computed from reported extraction rates (1 – arterial concentration/concentration in coronary sinus) putting the coronary blood flow to 0.8 mL/min/g and heart weight to 300 grams. (exp) The data points represent the means of various experimental studies.,,–,B, Dependence of the glucose uptake rate from the plasma concentration of free fatty acids (FFAs). The solid line represents model values; squares symbolize in vivo data taken from Nuutila et al.
Figure 3.
Figure 3.
MVATP(rest) and MVATP(max) for controls and patients with mitral valve disease and aortic stenosis. A, Bottom values of the bars refer to MVATP(rest); top values refer to MVATP(max). The bar length indicates the myocardial ATP production reserve (MAPR=MVATP[max] – MVATP[rest]). B through D, Box plots showing mean values, upper and lower quartiles, and total span of MVATP(rest), MVATP(max), and MAPR for controls and patients with mitral valve insufficiency (MVI) and aortic stenosis (AS). Significant differences between the patient groups are indicated by connecting brackets with asterisks giving the significance level (*P<0.05, **P<0.01, ***P<0.001). A Bonferroni correction was applied to account for multiple testing.
Figure 4.
Figure 4.
Contribution of energy-delivering substrates. A and B, Relative contribution of the energy-delivering substrates to total energy expenditure at MVATP(rest) and MVATP(max) for the control group for 60 minutes pacing. Areas of the pie charts represent total energy expenditure. Changes of substrate uptake rates of patients with mitral valve insufficiency (MVI) or aortic stenosis (AS) relative to controls are shown at rest (C) and during maximal pacing (D). Plots show the relative change of substrate uptake rates of glucose (blue), lactate (orange), fatty acids (yellow), and ketone bodies (purple) for patients with MVI or AS during rest and at maximal ATP production rate after 60 minutes of pacing. Relative uptake rates are normalized to control values (ie, all control values are equal to 1). Significant changes from control are indicated by asterisks (*P<0.05, **P<0.01, ***P<0.001).
Figure 5.
Figure 5.
Correlation between tMVATP(rest) and tMVATP(max) and internal myocardial power as well as cardiac output for patients with mitral valve insufficiency or aortic stenosis. A through D, Patients with mitral valve insufficiency (MVI). E through H, Patients with aortic stenosis (AS). iMP indicates internal myocardial power; and CO, cardiac output.
Figure 6.
Figure 6.
Metabolic characterization of 3 patients with aortic stenosis. On the left, relative substrate utilization rates are shown compared with healthy controls at rest (A) and at maximal load (C). On the right, relative contribution of the different substrates (glucose [blue], lactate [orange], fatty acids [yellow], and ketone bodies [purple]) to overall ATP production rate at rest (B) and maximal load (D) are presented. Areas of pie diagrams represent total ATP production rate.

References

    1. Evans RD, Clarke K. Myocardial substrate metabolism in heart disease. Front Biosci (Schol Ed). 2012; 4:556–580. doi: 10.2741/285
    1. Lopaschuk GD, Russell JC. Myocardial function and energy substrate metabolism in the insulin-resistant JCR:LA corpulent rat. J Appl Physiol (1985). 1991; 71:1302–1308. doi: 10.1152/jappl.1991.71.4.1302
    1. Neubauer S. The failing heart: an engine out of fuel. N Engl J Med. 2007; 356:1140–1151. doi: 10.1056/NEJMra063052
    1. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005; 85:1093–1129. doi: 10.1152/physrev.00006.2004
    1. Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, et al. ; American Heart Association Council on Basic Cardiovascular Sciences. Assessing cardiac metabolism: a scientific statement from the American Heart Association. Circ Res. 2016; 118:1659–1701. doi: 10.1161/RES.0000000000000097
    1. Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res. 2004; 95:135–145. doi: 10.1161/01.RES.0000137170.41939.d9
    1. Herrmann G, Decherd GM, Jr. The chemical nature of heart failure. Ann Intern Med. 1939; 12:1233–1244
    1. Ning XH, Zhang J, Liu J, Ye Y, Chen SH, From AH, Bache RJ, Portman MA. Signaling and expression for mitochondrial membrane proteins during left ventricular remodeling and contractile failure after myocardial infarction. J Am Coll Cardiol. 2000; 36:282–287. doi: 10.1016/s0735-1097(00)00689-6
    1. Quigley AF, Kapsa RM, Esmore D, Hale G, Byrne E. Mitochondrial respiratory chain activity in idiopathic dilated cardiomyopathy. J Card Fail. 2000; 6:47–55. doi: 10.1016/s1071-9164(00)00011-7
    1. Peterzan MA, Clarke WT, Lygate CA, Lake HA, Lau JYC, Miller JJ, Johnson E, Rayner JJ, Hundertmark MJ, Sayeed R, et al. . Cardiac energetics in patients with aortic stenosis and preserved versus reduced ejection fraction. Circulation. 2020; 141:1971–1985. doi: 10.1161/CIRCULATIONAHA.119.043450
    1. Abdurrachim D, Prompers JJ. Evaluation of cardiac energetics by non-invasive 31P magnetic resonance spectroscopy. Biochim Biophys Acta Mol Basis Dis. 2018; 1864:1939–1948. doi: 10.1016/j.bbadis.2017.11.013
    1. Ingwall JS. Phosphorus nuclear magnetic resonance spectroscopy of cardiac and skeletal muscles. Am J Physiol. 1982; 242:H729–H744. doi: 10.1152/ajpheart.1982.242.5.H729
    1. Peterzan MA, Lewis AJM, Neubauer S, Rider OJ. Non-invasive investigation of myocardial energetics in cardiac disease using 31P magnetic resonance spectroscopy. Cardiovasc Diagn Ther. 2020; 10:625–635. doi: 10.21037/cdt-20-275
    1. Karlstädt A, Fliegner D, Kararigas G, Ruderisch HS, Regitz-Zagrosek V, Holzhütter HG. CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism. BMC Syst Biol. 2012; 6:114. doi: 10.1186/1752-0509-6-114
    1. Cortassa S, Aon MA, Marbán E, Winslow RL, O’Rourke B. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J. 2003; 84:2734–2755. doi: 10.1016/S0006-3495(03)75079-6
    1. Beard DA. Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism. PLoS Comput Biol. 2006; 2:e107. doi: 10.1371/journal.pcbi.0020107
    1. Wu F, Yang F, Vinnakota KC, Beard DA. Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology. J Biol Chem. 2007; 282:24525–24537. doi: 10.1074/jbc.M701024200
    1. Wu F, Zhang EY, Zhang J, Bache RJ, Beard DA. Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischaemic hearts. J Physiol. 2008; 586:4193–4208. doi: 10.1113/jphysiol.2008.154732
    1. Berndt N, Bulik S, Wallach I, Wünsch T, König M, Stockmann M, Meierhofer D, Holzhütter HG. HEPATOKIN1 is a biochemistry-based model of liver metabolism for applications in medicine and pharmacology. Nat Commun. 2018; 9:2386. doi: 10.1038/s41467-018-04720-9
    1. Hughes CS, Moggridge S, Müller T, Sorensen PH, Morin GB, Krijgsveld J. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat Protoc. 2019; 14:68–85. doi: 10.1038/s41596-018-0082-x
    1. Rappsilber J, Ishihama Y, Mann M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem. 2003; 75:663–670. doi: 10.1021/ac026117i
    1. Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016; 11:2301–2319. doi: 10.1038/nprot.2016.136
    1. Berndt N, Kann O, Holzhütter HG. Physiology-based kinetic modeling of neuronal energy metabolism unravels the molecular basis of NAD(P)H fluorescence transients. J Cereb Blood Flow Metab. 2015; 35:1494–1506. doi: 10.1038/jcbfm.2015.70
    1. Moors CC, van der Zijl NJ, Diamant M, Blaak EE, Goossens GH. Impaired insulin sensitivity is accompanied by disturbances in skeletal muscle fatty acid handling in subjects with impaired glucose metabolism. Int J Obes (Lond). 2012; 36:709–717. doi: 10.1038/ijo.2011.123
    1. Gordon RS, Jr, Cherkes A. Unesterified fatty acid in human blood plasma. J Clin Invest. 1956; 35:206–212. doi: 10.1172/JCI103265
    1. Imaizumi A, Adachi Y, Kawaguchi T, Higasa K, Tabara Y, Sonomura K, Sato TA, Takahashi M, Mizukoshi T, Yoshida HO, et al. . Genetic basis for plasma amino acid concentrations based on absolute quantification: a genome-wide association study in the Japanese population. Eur J Hum Genet. 2019; 27:621–630. doi: 10.1038/s41431-018-0296-y
    1. Nishioka M, Imaizumi A, Ando T, Tochikubo O. The overnight effect of dietary energy balance on postprandial plasma free amino acid (PFAA) profiles in Japanese adult men. PLoS One. 2013; 8:e62929. doi: 10.1371/journal.pone.0062929
    1. Ottosson F, Ericson U, Almgren P, Nilsson J, Magnusson M, Fernandez C, Melander O. Postprandial levels of branch chained and aromatic amino acids associate with fasting glycaemia. J Amino Acids. 2016; 2016:8576730. doi: 10.1155/2016/8576730
    1. Ravikumar B, Carey PE, Snaar JE, Deelchand DK, Cook DB, Neely RD, English PT, Firbank MJ, Morris PG, Taylor R. Real-time assessment of postprandial fat storage in liver and skeletal muscle in health and type 2 diabetes. Am J Physiol Endocrinol Metab. 2005; 288:E789–E797. doi: 10.1152/ajpendo.00557.2004
    1. Steinhauser ML, Olenchock BA, O’Keefe J, Lun M, Pierce KA, Lee H, Pantano L, Klibanski A, Shulman GI, Clish CB, et al. . The circulating metabolome of human starvation. JCI Insight. 2018; 3:121434. doi: 10.1172/jci.insight.121434
    1. Bauer BA, Rogers PJ, Miller TD, Bove AA, Tyce GM. Exercise training produces changes in free and conjugated catecholamines. Med Sci Sports Exerc. 1989; 21:558–562
    1. Dimsdale JE, Moss J. Plasma catecholamines in stress and exercise. JAMA. 1980; 243:340–342
    1. Nelson RR, Gobel FL, Jorgensen CR, Wang K, Wang Y, Taylor HL. Hemodynamic predictors of myocardial oxygen consumption during static and dynamic exercise. Circulation. 1974; 50:1179–1189. doi: 10.1161/01.cir.50.6.1179
    1. Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res. 2017; 113:411–421. doi: 10.1093/cvr/cvx017
    1. Lee CB, Goubergrits L, Fernandes JF, Nordmeyer S, Knosalla C, Berger F, Falk V, Kuehne T, Kelm M. Surrogates for myocardial power and power efficiency in patients with aortic valve disease. Sci Rep. 2019; 9:16407. doi: 10.1038/s41598-019-52909-9
    1. Bergman BC, Tsvetkova T, Lowes B, Wolfel EE. Myocardial FFA metabolism during rest and atrial pacing in humans. Am J Physiol Endocrinol Metab. 2009; 296:E358–E366. doi: 10.1152/ajpendo.90747.2008
    1. Bergman BC, Tsvetkova T, Lowes B, Wolfel EE. Myocardial glucose and lactate metabolism during rest and atrial pacing in humans. J Physiol. 2009; 587:2087–2099. doi: 10.1113/jphysiol.2008.168286
    1. Bing RJ, Siegel A, Ungar I, Gilbert M. Metabolism of the human heart: II: studies on fat, ketone and amino acid metabolism. Am J Med. 1954; 16:504–515. doi: 10.1016/0002-9343(54)90365-4
    1. Camici P, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis. 1989; 32:217–238. doi: 10.1016/0033-0620(89)90027-3
    1. Gertz EW, Wisneski JA, Stanley WC, Neese RA. Myocardial substrate utilization during exercise in humans: dual carbon-labeled carbohydrate isotope experiments. J Clin Invest. 1988; 82:2017–2025. doi: 10.1172/JCI113822
    1. Mizuno Y, Harada E, Nakagawa H, Morikawa Y, Shono M, Kugimiya F, Yoshimura M, Yasue H. The diabetic heart utilizes ketone bodies as an energy source. Metabolism. 2017; 77:65–72. doi: 10.1016/j.metabol.2017.08.005
    1. Mudge GH, Jr, Mills RM, Jr, Taegtmeyer H, Gorlin R, Lesch M. Alterations of myocardial amino acid metabolism in chronic ischemic heart disease. J Clin Invest. 1976; 58:1185–1192. doi: 10.1172/JCI108571
    1. Voros G, Ector J, Garweg C, Droogne W, Van Cleemput J, Peersman N, Vermeersch P, Janssens S. Increased cardiac uptake of ketone bodies and free fatty acids in human heart failure and hypertrophic left ventricular remodeling. Circ Heart Fail. 2018; 11:e004953. doi: 10.1161/CIRCHEARTFAILURE.118.004953
    1. Nuutila P, Knuuti MJ, Raitakari M, Ruotsalainen U, Teräs M, Voipio-Pulkki LM, Haaparanta M, Solin O, Wegelius U, Yki-Järvinen H. Effect of antilipolysis on heart and skeletal muscle glucose uptake in overnight fasted humans. Am J Physiol. 1994; 267:E941–E946. doi: 10.1152/ajpendo.1994.267.6.E941
    1. Camici P, Marraccini P, Marzilli M, Lorenzoni R, Buzzigoli G, Puntoni R, Boni C, Bellina CR, Klassen GA, L’Abbate A. Coronary hemodynamics and myocardial metabolism during and after pacing stress in normal humans. Am J Physiol. 1989; 257:E309–E317. doi: 10.1152/ajpendo.1989.257.3.E309
    1. Kaijser L, Ericsson M, Walldius G. Fatty acid turnover in the ischaemic compared to the non-ischaemic human heart. Mol Cell Biochem. 1989; 88:181–184. doi: 10.1007/BF00223441
    1. Fillmore N, Levasseur JL, Fukushima A, Wagg CS, Wang W, Dyck JRB, Lopaschuk GD. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Mol Med. 2018; 24:3. doi: 10.1186/s10020-018-0005-x
    1. Kübler W, Spieckermann PG. Regulation of glycolysis in the ischemic and the anoxic myocardium. J Mol Cell Cardiol. 1970; 1:351–377. doi: 10.1016/0022-2828(70)90034-9
    1. Sankaralingam S, Lopaschuk GD. Cardiac energy metabolic alterations in pressure overload-induced left and right heart failure (2013 Grover Conference Series). Pulm Circ. 2015; 5:15–28. doi: 10.1086/679608
    1. Dweck MR, Joshi S, Murigu T, Gulati A, Alpendurada F, Jabbour A, Maceira A, Roussin I, Northridge DB, Kilner PJ, et al. . Left ventricular remodeling and hypertrophy in patients with aortic stenosis: insights from cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012; 14:50. doi: 10.1186/1532-429X-14-50
    1. Enache R, Antonini-Canterin F, Piazza R, Popescu BA, Leiballi E, Marinigh R, Andriani C, Pecoraro R, Ginghina C, Nicolosi GL. CME: long-term outcome in asymptomatic patients with severe aortic regurgitation, normal left ventricular ejection fraction, and severe left ventricular dilatation. Echocardiography. 2010; 27:915–922. doi: 10.1111/j.1540-8175.2010.01193.x
    1. Greene CL, Jaatinen KJ, Wang H, Koyano TK, Bilbao MS, Woo YJ. Transcriptional profiling of normal, stenotic, and regurgitant human aortic valves. Genes (Basel). 2020; 11:E789. doi: 10.3390/genes11070789
    1. Mann DL. The emerging role of small non-coding RNAs in the failing heart: big hopes for small molecules. Cardiovasc Drugs Ther. 2011; 25:149. doi: 10.1007/s10557-011-6292-x
    1. Topkara VK, Mann DL. Role of microRNAs in cardiac remodeling and heart failure. Cardiovasc Drugs Ther. 2011; 25:171–182. doi: 10.1007/s10557-011-6289-5
    1. Pasquet A, Lauer MS, Williams MJ, Secknus MA, Lytle B, Marwick TH. Prediction of global left ventricular function after bypass surgery in patients with severe left ventricular dysfunction. Impact of pre-operative myocardial function, perfusion, and metabolism. Eur Heart J. 2000; 21:125–136. doi: 10.1053/euhj.1999.1663
    1. Aubert G, Martin OJ, Horton JL, Lai L, Vega RB, Leone TC, Koves T, Gardell SJ, Krüger M, Hoppel CL, et al. . The failing heart relies on ketone bodies as a fuel. Circulation. 2016; 133:698–705. doi: 10.1161/CIRCULATIONAHA.115.017355
    1. Harvey KL, Holcomb LE, Kolwicz SC, Jr. Ketogenic diets and exercise performance. Nutrients. 2019; 11:E2296. doi: 10.3390/nu11102296
    1. Deussen A, Lauer T, Loncar R, Kropp J. Heterogeneity of metabolic parameters in the left ventricular myocardium and its relation to local blood flow. Basic Res Cardiol. 2001; 96:564–574. doi: 10.1007/s003950170008
    1. Bach DS, Beanlands RS, Schwaiger M, Armstrong WF. Heterogeneity of ventricular function and myocardial oxidative metabolism in nonischemic dilated cardiomyopathy. J Am Coll Cardiol. 1995; 25:1258–1262. doi: 10.1016/0735-1097(95)00019-Z
    1. Berndt N, Holzhütter HG. Dynamic metabolic zonation of the hepatic glucose metabolism is accomplished by sinusoidal plasma gradients of nutrients and hormones. Front Physiol. 2018; 9:1786. doi: 10.3389/fphys.2018.01786
    1. Berndt N, Horger MS, Bulik S, Holzhütter HG. A multiscale modelling approach to assess the impact of metabolic zonation and microperfusion on the hepatic carbohydrate metabolism. PLoS Comput Biol. 2018; 14:e1006005. doi: 10.1371/journal.pcbi.1006005
    1. Ikeda Y, Okamura-Ikeda K, Tanaka K. Purification and characterization of short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases from rat liver mitochondria: isolation of the holo- and apoenzymes and conversion of the apoenzyme to the holoenzyme. J Biol Chem. 1985; 260:1311–1325
    1. Trumble GE, Smith MA, Winder WW. Purification and characterization of rat skeletal muscle acetyl-CoA carboxylase. Eur J Biochem. 1995; 231:192–198. doi: 10.1111/j.1432-1033.1995.tb20686.x
    1. Tucker GA, Dawson AP. The kinetics of rat liver and heart mitochondrial beta-hydroxybutyrate dehydrogenase. Biochem J. 1979; 179:579–581. doi: 10.1042/bj1790579
    1. Bulik S, Holzhütter HG, Berndt N. The relative importance of kinetic mechanisms and variable enzyme abundances for the regulation of hepatic glucose metabolism–insights from mathematical modeling. BMC Biol. 2016; 14:15. doi: 10.1186/s12915-016-0237-6
    1. Clutter WE, Bier DM, Shah SD, Cryer PE. Epinephrine plasma metabolic clearance rates and physiologic thresholds for metabolic and hemodynamic actions in man. J Clin Invest. 1980; 66:94–101. doi: 10.1172/JCI109840
    1. Sharma N, Okere IC, Brunengraber DZ, McElfresh TA, King KL, Sterk JP, Huang H, Chandler MP, Stanley WC. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation. J Physiol. 2005; 562Pt 2593–603. doi: 10.1113/jphysiol.2004.075713
    1. Saddik M, Gamble J, Witters LA, Lopaschuk GD. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem. 1993; 268:25836–25845
    1. Maoz D, Lee HJ, Deutsch J, Rapoport SI, Bazinet RP. Immediate no-flow ischemia decreases rat heart nonesterified fatty acid and increases acyl-CoA species concentrations. Lipids. 2005; 40:1149–1154. doi: 10.1007/s11745-005-1479-9
    1. Stanley WC, Meadows SR, Kivilo KM, Roth BA, Lopaschuk GD. Beta-Hydroxybutyrate inhibits myocardial fatty acid oxidation in vivo independent of changes in malonyl-CoA content. Am J Physiol Heart Circ Physiol. 2003; 285:H1626–H1631. doi: 10.1152/ajpheart.00332.2003
    1. Sun G, Yang K, Zhao Z, Guan S, Han X, Gross RW. Shotgun metabolomics approach for the analysis of negatively charged water-soluble cellular metabolites from mouse heart tissue. Anal Chem. 2007; 79:6629–6640. doi: 10.1021/ac070843+
    1. Bedi KC, Jr, Snyder NW, Brandimarto J, Aziz M, Mesaros C, Worth AJ, Wang LL, Javaheri A, Blair IA, Margulies KB, et al. . Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation. 2016; 133:706–716. doi: 10.1161/CIRCULATIONAHA.115.017545
    1. Idell-Wenger JA, Grotyohann LW, Neely JR. Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem. 1978; 253:4310–4318
    1. Russell RR, III, Taegtmeyer H. Coenzyme A sequestration in rat hearts oxidizing ketone bodies. J Clin Invest. 1992; 89:968–973. doi: 10.1172/JCI115679
    1. Kalsi KK, Smolenski RT, Pritchard RD, Khaghani A, Seymour AM, Yacoub MH. Energetics and function of the failing human heart with dilated or hypertrophic cardiomyopathy. Eur J Clin Invest. 1999; 29:469–477. doi: 10.1046/j.1365-2362.1999.00468.x
    1. Kobayashi K, Neely JR. Control of maximum rates of glycolysis in rat cardiac muscle. Circ Res. 1979; 44:166–175. doi: 10.1161/01.res.44.2.166
    1. Wan B, Doumen C, Duszynski J, Salama G, Vary TC, LaNoue KF. Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts. Am J Physiol. 1993; 265:H453–H460. doi: 10.1152/ajpheart.1993.265.2.H453
    1. Chidsey CA, Weinbach EC, Pool PE, Morrow AG. Biochemical studies of energy production in the failing human heart. J Clin Invest. 1966; 45:40–50. doi: 10.1172/JCI105322
    1. Bowe C, Nzonzi J, Corsin A, Moravec J, Feuvray D. Lipid intermediates in chronically volume-overloaded rat hearts. Effect of diffuse ischemia. Pflugers Arch. 1984; 402:317–320. doi: 10.1007/BF00585516
    1. Masuda T, Dobson GP, Veech RL. The Gibbs-Donnan near-equilibrium system of heart. J Biol Chem. 1990; 265:20321–20334
    1. Kashiwaya Y, Sato K, Tsuchiya N, Thomas S, Fell DA, Veech RL, Passonneau JV. Control of glucose utilization in working perfused rat heart. J Biol Chem. 1994; 269:25502–25514
    1. Narabayashi H, Lawson JW, Uyeda K. Regulation of phosphofructokinase in perfused rat heart: requirement for fructose 2,6-bisphosphate and a covalent modification. J Biol Chem. 1985; 260:9750–9758
    1. Kobayashi K, Neely JR. Mechanism of pyruvate dehydrogenase activation by increased cardiac work. J Mol Cell Cardiol. 1983; 15:369–382. doi: 10.1016/0022-2828(83)90321-8
    1. Wischeler BS, Müller-Ruchholtz ER, Reinauer H. [Influence of heart work and substrate uptake on the regulation of pyruvate dehydrogenase activity in isolated guinea pig hearts (author’s transl).] Pflugers Arch. 1975; 355:27–37. doi: 10.1007/BF00584797
    1. El-Sharkawy AM, Gabr RE, Schär M, Weiss RG, Bottomley PA. Quantification of human high-energy phosphate metabolite concentrations at 3 T with partial volume and sensitivity corrections. NMR Biomed. 2013; 26:1363–1371. doi: 10.1002/nbm.2961
    1. Weiss RG, Gerstenblith G, Bottomley PA. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci U S A. 2005; 102:808–813. doi: 10.1073/pnas.0408962102
    1. Smith CS, Bottomley PA, Schulman SP, Gerstenblith G, Weiss RG. Altered creatine kinase adenosine triphosphate kinetics in failing hypertrophied human myocardium. Circulation. 2006; 114:1151–1158. doi: 10.1161/CIRCULATIONAHA.106.613646
    1. Bottomley PA, Wu KC, Gerstenblith G, Schulman SP, Steinberg A, Weiss RG. Reduced myocardial creatine kinase flux in human myocardial infarction: an in vivo phosphorus magnetic resonance spectroscopy study. Circulation. 2009; 119:1918–1924. doi: 10.1161/CIRCULATIONAHA.108.823187
    1. Meininger M, Landschütz W, Beer M, Seyfarth T, Horn M, Pabst T, Haase A, Hahn D, Neubauer S, von Kienlin M. Concentrations of human cardiac phosphorus metabolites determined by SLOOP 31P NMR spectroscopy. Magn Reson Med. 1999; 41:657–663. doi: 10.1002/(sici)1522-2594(199904)41:4<657::aid-mrm3>;2-i
    1. Okada M, Mitsunami K, Inubushi T, Kinoshita M. Influence of aging or left ventricular hypertrophy on the human heart: contents of phosphorus metabolites measured by 31P MRS. Magn Reson Med. 1998; 39:772–782. doi: 10.1002/mrm.1910390515
    1. Rovetto MJ, Lamberton WF, Neely JR. Mechanisms of glycolytic inhibition in ischemic rat hearts. Circ Res. 1975; 37:742–751. doi: 10.1161/01.res.37.6.742
    1. Cortassa S, Caceres V, Bell LN, O’Rourke B, Paolocci N, Aon MA. From metabolomics to fluxomics: a computational procedure to translate metabolite profiles into metabolic fluxes. Biophys J. 2015; 108:163–172. doi: 10.1016/j.bpj.2014.11.1857
    1. Randle PJ, England PJ, Denton RM. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart. Biochem J. 1970; 117:677–695. doi: 10.1042/bj1170677
    1. Scharff R, Wool IG. Effect of diabetes on the concentration of amino acids in plasma and heart muscle of rats. Biochem J. 1966; 99:173–178. doi: 10.1042/bj0990173
    1. Morgan HE, Earl DC, Broadus A, Wolpert EB, Giger KE, Jefferson LS. Regulation of protein synthesis in heart muscle: I: effect of amino acid levels on protein synthesis. J Biol Chem. 1971; 246:2152–2162
    1. Morgan HE, Chua BH, Fuller EO, Siehl D. Regulation of protein synthesis and degradation during in vitro cardiac work. Am J Physiol. 1980; 238:E431–E442. doi: 10.1152/ajpendo.1980.238.5.E431
    1. Whitmer JT, Idell-Wenger JA, Rovetto MJ, Neely JR. Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem. 1978; 253:4305–4309
    1. Cederbla G, Lindsted S, Lundholm K. Concentration of carnitine in human muscle-tissue. Clin Chim Acta. 1974; 53:311–321. doi: 10.1016/0009-8981(74)90270-8
    1. Denton RM, Randle PJ. Hormonal control of lipid concentration in rat heart and gastrocnemius. Nature. 1965; 208:488. doi: 10.1038/208488a0
    1. McGarry JD, Mills SE, Long CS, Foster DW. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues: demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J. 1983; 214:21–28. doi: 10.1042/bj2140021
    1. Minkler PE, Kerner J, Kasumov T, Parland W, Hoppel CL. Quantification of malonyl-coenzyme A in tissue specimens by high-performance liquid chromatography/mass spectrometry. Anal Biochem. 2006; 352:24–32. doi: 10.1016/j.ab.2006.02.015
    1. Reszko AE, Kasumov T, Comte B, Pierce BA, David F, Bederman IR, Deutsch J, Des Rosiers C, Brunengraber H. Assay of the concentration and 13C-isotopic enrichment of malonyl-coenzyme A by gas chromatography-mass spectrometry. Anal Biochem. 2001; 298:69–75. doi: 10.1006/abio.2001.5349
    1. Li Q, Sadhukhan S, Berthiaume JM, Ibarra RA, Tang H, Deng S, Hamilton E, Nagy LE, Tochtrop GP, Zhang GF. 4-Hydroxy-2(E)-nonenal (HNE) catabolism and formation of HNE adducts are modulated by β oxidation of fatty acids in the isolated rat heart. Free Radic Biol Med. 2013; 58:35–44. doi: 10.1016/j.freeradbiomed.2013.01.005
    1. Kasuya F, Oti Y, Tatsuki T, Igarashi K. Analysis of medium-chain acyl-coenzyme A esters in mouse tissues by liquid chromatography-electrospray ionization mass spectrometry. Anal Biochem. 2004; 325:196–205. doi: 10.1016/j.ab.2003.10.043
    1. la Fleur SE, Kalsbeek A, Wortel J, Fekkes ML, Buijs RM. A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes. 2001; 50:1237–1243. doi: 10.2337/diabetes.50.6.1237
    1. Frangioudakis G, Gyte AC, Loxham SJ, Poucher SM. The intravenous glucose tolerance test in cannulated Wistar rats: a robust method for the in vivo assessment of glucose-stimulated insulin secretion. J Pharmacol Toxicol Methods. 2008; 57:106–113. doi: 10.1016/j.vascn.2007.12.002
    1. Hara E, Saito M. Diurnal changes in plasma glucose and insulin responses to oral glucose load in rats. Am J Physiol. 1980; 238:E463–E466. doi: 10.1152/ajpendo.1980.238.5.E463
    1. Stuenaes JT, Bolling A, Ingvaldsen A, Rommundstad C, Sudar E, Lin FC, Lai YC, Jensen J. Beta-adrenoceptor stimulation potentiates insulin-stimulated PKB phosphorylation in rat cardiomyocytes via cAMP and PKA. Br J Pharmacol. 2010; 160:116–129. doi: 10.1111/j.1476-5381.2010.00677.x
    1. Ramachandran C, Angelos KL, Walsh DA. Cyclic AMP-dependent and cyclic AMP-independent antagonism of insulin activation of cardiac glycogen synthase. J Biol Chem. 1982; 257:1448–1457
    1. De Gasquet P, Griglio S, Pequignot-Planche E, Malewiak MI. Diurnal changes in plasma and liver lipids and lipoprotein lipase activity in heart and adipose tissue in rats fed a high and low fat diet. J Nutr. 1977; 107:199–212. doi: 10.1093/jn/107.2.199
    1. Yamamoto H, Nagai K, Nakagawa H. Role of SCN in daily rhythms of plasma glucose, FFA, insulin and glucagon. Chronobiol Int. 1987; 4:483–491. doi: 10.3109/07420528709078539
    1. Djordjevic J, Jasnic N, Vujovic P, Djurasevic S, Djordjevic I, Cvijic G. The effect of fasting on the diurnal rhythm of rat ACTH and corticosterone secretion. Arch Biol Sci. 2008; 60:541–546. doi: 10.2298/ABS0804541D
    1. Clark MG, Patten GS. Adrenergic regulation of glucose metabolism in rat heart: a calcium-dependent mechanism mediated by both alpha- and beta-adrenergic receptors. J Biol Chem. 1984; 259:15204–15211
    1. Henderson MJ, Morgan HE, Park CR. Regulation of glucose uptake in muscle: V: the effect of growth hormone on glucose transport in the isolated, perfused rat heart. J Biol Chem. 1961; 236:2157–2161
    1. Morgan HE, Henderson MJ, Regen DM, Park CR. Regulation of glucose uptake in muscle: I: the effects of insulin and anoxia on glucose transport and phosphorylation in the isolated, perfused heart of normal rats. J Biol Chem. 1961; 236:253–261
    1. Drake AJ, Haines JR, Noble MI. Preferential uptake of lactate by the normal myocardium in dogs. Cardiovasc Res. 1980; 14:65–72. doi: 10.1093/cvr/14.2.65
    1. Vyska K, Meyer W, Stremmel W, Notohamiprodjo G, Minami K, Machulla HJ, Gleichmann U, Meyer H, Körfer R. Fatty acid uptake in normal human myocardium. Circ Res. 1991; 69:857–870. doi: 10.1161/01.res.69.3.857
    1. Stremmel W. Fatty acid uptake by isolated rat heart myocytes represents a carrier-mediated transport process. J Clin Invest. 1988; 81:844–852. doi: 10.1172/JCI113393
    1. Sultan AM. Effects of diabetes and insulin on ketone bodies metabolism in heart. Mol Cell Biochem. 1992; 110:17–23. doi: 10.1007/BF02385001

Source: PubMed

3
订阅