GSTA1 diplotypes affect busulfan clearance and toxicity in children undergoing allogeneic hematopoietic stem cell transplantation: a multicenter study

Marc Ansari, Patricia Huezo-Diaz Curtis, Chakradhara Rao S Uppugunduri, Mohammed Aziz Rezgui, Tiago Nava, Vid Mlakar, Laurence Lesne, Yves Théoret, Yves Chalandon, Lee L Dupuis, Tao Schechter, Imke H Bartelink, Jaap J Boelens, Robbert Bredius, Jean-Hugues Dalle, Saba Azarnoush, Petr Sedlacek, Victor Lewis, Martin Champagne, Christina Peters, Henrique Bittencourt, Maja Krajinovic, Marc Ansari, Patricia Huezo-Diaz Curtis, Chakradhara Rao S Uppugunduri, Mohammed Aziz Rezgui, Tiago Nava, Vid Mlakar, Laurence Lesne, Yves Théoret, Yves Chalandon, Lee L Dupuis, Tao Schechter, Imke H Bartelink, Jaap J Boelens, Robbert Bredius, Jean-Hugues Dalle, Saba Azarnoush, Petr Sedlacek, Victor Lewis, Martin Champagne, Christina Peters, Henrique Bittencourt, Maja Krajinovic

Abstract

Busulfan (BU) dose adjustment following therapeutic drug monitoring contributes to better outcome of hematopoietic stem cell transplantation (HSCT). Further improvement could be achieved through genotype-guided BU dose adjustments. To investigate this aspect, polymorphism within glutathione S transferase genes were assessed. Particularly, promoter haplotypes of the glutathione S transferase A1 (GSTA1) were evaluated in vitro, with reporter gene assays and clinically, in a pediatric multi-center study (N =138) through association with BU pharmacokinetics (PK) and clinical outcomes. Promoter activity significantly differed between the GSTA1 haplotypes (p<0.001) supporting their importance in capturing PK variability. Four GSTA1 diplotype groups that significantly correlated with clearance (p=0.009) were distinguished. Diplotypes underlying fast and slow metabolizing capacity showed higher and lower BU clearance (ml/min/kg), respectively. GSTA1 diplotypes with slow metabolizing capacity were associated with higher incidence of sinusoidal obstruction syndrome, acute graft versus host disease and combined treatment-related toxicity (p<0.0005). Among other GST genes investigated, GSTP1 313GG correlated with acute graft versus host disease grade 1-4 (p=0.01) and GSTM1 non-null genotype was associated with hemorrhagic cystitis (p=0.003). This study further strengthens the hypothesis that GST diplotypes/genotypes could be incorporated into already existing population pharmacokinetic models for improving first BU dose prediction and HSCT outcomes. (No Clinicaltrials.gov identifier: NCT01257854. Registered 8 December 2010, retrospectively registered).

Keywords: busulfan; hematopoietic stem cell transplantion; pharmacogenetics; pharmacokinetics; toxicity.

Conflict of interest statement

CONFLICTS OF INTEREST H.B has acted as a consultant for Jazz Pharmaceuticals and obtained an education grant from them. H.B also acted as a consultant for Seattle Genetics. The authors declare that they have no other financial relationship(s) to disclose.

Figures

Figure 1. GSTA1 Haplotype and Reporter Gene…
Figure 1. GSTA1 Haplotype and Reporter Gene assay of GSTA1 promoter
A. Haplotypes investigated with luciferase reporter assay. rs (reference SNP ID) numbers correspond to each SNP included for site directed mutagenesis. SNPs used for genotyping and for inferring sub-haplotypes in patients are highlighted in bold. B. Luciferase activities of the proximal promoters of GSTA1 variants (GSTA1*A1, GSTA1*A2, GSTA1*A3, GSTA1*B1a, GSTA1*B2, GSTA1*B1b) in transient transfection in HepG2 cells. Error bars represent the standard deviations. Pairwise comparisons by analysis of variance (ANOVA) between data for the GSTA1*A1 vs. any other haplotype, after Bonferroni correction *** = p < 0.001; ****= p <0.0001, ***** = p < 0.000001.
Figure 2. Pharmacokinetic parameters of BU and…
Figure 2. Pharmacokinetic parameters of BU and dose requirement in relation to GSTA1 functional diplotype groups and GSTM1 genotypes
A. Busulfan first dose clearance (CL, in ml/min/kg) against GSTA1 diplotypes B. Busulfan first dose CL in females only against GSTA1 genotypes. C. Dose requirement (ratio of adjusted to initial dose) against GSTA1 diplotypes. D. Cumulative AUC (mg.h/L) against GSTA1 diplotypes. CHU Sainte-Justine patients only were included for analysis presented in C and D. Diplotype groups II and III were combined into a single group in C and D. E. Busulfan first dose clearance in children above 4 yrs of age against GSTM1 genotypes. DELGSTM = Deleted GSTM1 gene. Number of patients and p values are depicted on the plots.
Figure 3. Incidence of SOS, aGvHD and…
Figure 3. Incidence of SOS, aGvHD and TRT in relation to GSTA1 functional diplotype groups
Cumulative incidences of A. sinusoidal obstruction syndrome (SOS), B. acute graft versus host disease (aGvHD) 1-4, C. treatment related toxicity (TRT) including aGvHD 1-4 and D. TRT including aGvHD 2-4. Results plotted for diplotype group IV (IV+) versus groups I, II & III (IV-). E. Overall survival (OS) in relation to GSTA1 extreme diplotype status (group I vs. group IV), in patients who received busulfan-cyclophosphamide conditioning regimen. Total number of patients represented by each curve with number of patients with indicated toxicities in parenthesis, and p value are depicted on each plot; group IV associated hazard ratios are depicted below each plot. F. Association of TRT with diplotype group IV in a competing events risk analysis. IV+ and IV- indicates the presence of this GSTA1 diplotype group. Competing events for TRT incidence were: death and relapse. p values for the difference in cumulative incidence of TRT, death, and relapse, between haplotype groups (IV vs others) is 0.000003, 0.3 and 0.5, respectively.
Figure 4. Complications of HSCT in relation…
Figure 4. Complications of HSCT in relation to GSTP1 genotypes and GSTA1 diplotypes
A. Acute GvHD 1-4 incidence according to GSTP1 c.313A>G genotypes; and B. Acute GvHD 1-4 incidence according to combinatory GSTA1-GSTP1 status. A plus sign represents the risk genotypes, which is presence of GSTP1*GG and/or GSTA1 diplotype group IV. C. Hemorrhagic Cystitis (HC) incidences in relation to GSTM1 Null and Non-null genotype.
Figure 5. Busulfan plasma exposure and clinical…
Figure 5. Busulfan plasma exposure and clinical outcomes of HSCT
Incidences of event-free survival (EFS), overall survival (OS), and treatment related toxicity (TRT) plotted against 3 groups based on first dose steady state concentration (Css) i.e. 900 ng/mL in all patients (n = 138). Total number of patients in each group (number of patients with events) are depicted on all plots. P values are shown on the plots.
Figure 6. Treatment related toxicity (TRT) in…
Figure 6. Treatment related toxicity (TRT) in relation to both 1st dose Css and GSTA1 groups
TRT (all cases combined) plotted against A. Busulfan Css below 900 ng/mL or B. Css above 900 ng/mL, dependent on whether patients are in GSTA1 diplotype group I, II, III (IV-) or IV (IV+). Total number of patients in each group with number of patients with TRT in brackets is depicted on all plots. Hazard ratio for group IV is depicted for plot (A) only.

References

    1. Santos GW, Tutschka PJ, Brookmeyer R, Saral R, Beschorner WE, Bias WB, Braine HG, Burns WH, Elfenbein GJ, Kaizer H. Marrow transplantation for acute nonlymphocytic leukemia after treatment with busulfan and cyclophosphamide. The New England Journal of Medicine. 1983;309:1347–53. doi: 10.1056/NEJM198312013092202.
    1. Hassan M, Andersson BS. Role of pharmacogenetics in busulfan/cyclophosphamide conditioning therapy prior to hematopoietic stem cell transplantation. Pharmacogenomics. 2013;14:75–87. doi: 10.2217/pgs.12.185.
    1. Huezo-Diaz P, Uppugunduri CR, Tyagi AK, Krajinovic M, Ansari M. Pharmacogenetic aspects of drug metabolizing enzymes in busulfan based conditioning prior to allogenic hematopoietic stem cell transplantation in children. Current Drug Metabolism. 2014;15:251–64.
    1. Bartelink IH, Lalmohamed A, Van Reij EML, Dvorak CC, Savic RM, Zwaveling J, Bredius RGM, Egberts ACG, Bierings M, Kletzel M, Shaw PJ, Nath CE, Hempel G, et al. A New Harmonized Approach to Associate Busulfan Exposure with Survival and Toxicity after Hematopoietic Cell Transplantation in Children and Young Adults: a Multicenter Retrospective Cohort Analysis. The Lancet Haematology. 2016;3:e526–e36.
    1. Zao JH, Schechter T, Liu WJ, Gerges S, Gassas A, Egeler RM, Grunebaum E, Dupuis LL. Performance of Busulfan Dosing Guidelines for Pediatric Hematopoietic Stem Cell Transplant Conditioning. Biology of Blood and Marrow Transplantation. 2015;21:1471–8. doi: 10.1016/j.bbmt.2015.05.006.
    1. Ansari M, Theoret Y, Rezgui MA, Peters C, Mezziani S, Desjean C, Vachon MF, Champagne MA, Duval M, Krajinovic M, Bittencourt H. Pediatric Disease Working Parties of the European B, Marrow Transplant G. Association between busulfan exposure and outcome in children receiving intravenous busulfan before hematopoietic stem cell transplantation. Therapeutic Drug Monitoring. 2014;36:93–9. doi: 10.1097/FTD.0b013e3182a04fc7.
    1. Baker KS, Bostrom B, DeFor T, Ramsay NK, Woods WG, Blazar BR. Busulfan pharmacokinetics do not predict relapse in acute myeloid leukemia. Bone Marrow Transplantation. 2000;26:607–14. doi: 10.1038/sj.bmt.1702590.
    1. Maheshwari S, Kassim A, Yeh RF, Domm J, Calder C, Evans M, Manes B, Bruce K, Brown V, Ho R, Frangoul H, Yang E. Targeted Busulfan therapy with a steady-state concentration of 600-700 ng/mL in patients with sickle cell disease receiving HLA-identical sibling bone marrow transplant. Bone Marrow Transplantation. 2014;49:366–9. doi: 10.1038/bmt.2013.188.
    1. Czerwinski M, Gibbs JP, Slattery JT. Busulfan conjugation by glutathione S-transferases alpha, mu, and pi. Drug Metabolism & Disposition. 1996;24:1015–9.
    1. Ramsay EE, Dilda PJ. Glutathione S-conjugates as prodrugs to target drug-resistant tumors. Frontiers in Pharmacology. 2014;5:181. doi: 10.3389/fphar.2014.00181.
    1. Coles BF, Morel F, Rauch C, Huber WW, Yang M, Teitel CH, Green B, Lang NP, Kadlubar FF. Effect of polymorphism in the human glutathione S-transferase A1 promoter on hepatic GSTA1 and GSTA2 expression. Pharmacogenetics. 2001;11:663–9.
    1. Bredschneider M, Klein K, Murdter TE, Marx C, Eichelbaum M, Nussler AK, Neuhaus P, Zanger UM, Schwab M. Genetic polymorphisms of glutathione S-transferase A1, the major glutathione S-transferase in human liver: consequences for enzyme expression and busulfan conjugation. Clinical Pharmacology & Therapeutics. 2002;71:479–87. doi: 10.1067/mcp.2002.124518.
    1. Board P, Coggan M, Johnston P, Ross V, Suzuki T, Webb G. Genetic heterogeneity of the human glutathione transferases: a complex of gene families. Pharmacology & Therapeutics. 1990;48:357–69.
    1. Zimniak P, Nanduri B, Pikula S, Bandorowicz-Pikula J, Singhal SS, Srivastava SK, Awasthi S, Awasthi YC. Naturally occurring human glutathione S-transferase GSTP1-1 isoforms with isoleucine and valine in position 104 differ in enzymic properties. European Journal of Biochemistry. 1994;224:893–9.
    1. Yin J, Xiao Y, Zheng H, Zhang YC. Once-daily i.v. BU-based conditioning regimen before allogeneic hematopoietic SCT: a study of influence of GST gene polymorphisms on BU pharmacokinetics and clinical outcomes in Chinese patients. Bone Marrow Transplantation. 2015;50:696–705. doi: 10.1038/bmt.2015.14.
    1. Choi B, Kim MG, Han N, Kim T, Ji E, Park S, Kim IW, Oh JM. Population pharmacokinetics and pharmacodynamics of busulfan with GSTA1 polymorphisms in patients undergoing allogeneic hematopoietic stem cell transplantation. Pharmacogenomics. 2015;16:1585–94. doi: 10.2217/pgs.15.98.
    1. Ansari M, Huezo-Diaz P, Rezgui MA, Marktel S, Duval M, Bittencourt H, Cappelli B, Krajinovic M. Influence of glutathione S-transferase gene polymorphisms on busulfan pharmacokinetics and outcome of hematopoietic stem-cell transplantation in thalassemia pediatric patients. Bone Marrow Transplantation. 2016;51:377–83. doi: 10.1038/bmt.2015.321.
    1. Bremer S, Floisand Y, Brinch L, Gedde-Dahl T, Bergan S. Glutathione Transferase Gene Variants Influence Busulfan Pharmacokinetics and Outcome After Myeloablative Conditioning. Therapeutic Drug Monitoring. 2015;37:493–500. doi: 10.1097/FTD.0000000000000180.
    1. ten Brink MH, van Bavel T, Swen JJ, van der Straaten T, Bredius RG, Lankester AC, Zwaveling J, Guchelaar HJ. Effect of genetic variants GSTA1 and CYP39A1 and age on busulfan clearance in pediatric patients undergoing hematopoietic stem cell transplantation. Pharmacogenomics. 2013;14:1683–90. doi: 10.2217/pgs.13.159.
    1. Ansari M, Rezgui MA, Theoret Y, Uppugunduri CR, Mezziani S, Vachon MF, Desjean C, Rousseau J, Labuda M, Przybyla C, Duval M, Champagne M, Peters C, et al. Glutathione S-transferase gene variations influence BU pharmacokinetics and outcome of hematopoietic SCT in pediatric patients. Bone Marrow Transplantation. 2013;48:939–46. doi: 10.1038/bmt.2012.265.
    1. ten Brink MH, Wessels JA, den Hartigh J, van der Straaten T, von dem Borne PA, Guchelaar HJ, Zwaveling J. Effect of genetic polymorphisms in genes encoding GST isoenzymes on BU pharmacokinetics in adult patients undergoing hematopoietic SCT. Bone Marrow Transplantation. 2012;47:190–5. doi: 10.1038/bmt.2011.55.
    1. Kim SD, Lee JH, Hur EH, Lee JH, Kim DY, Lim SN, Choi Y, Lim HS, Bae KS, Noh GJ, Yun SC, Han SB, Lee KH. Influence of GST gene polymorphisms on the clearance of intravenous busulfan in adult patients undergoing hematopoietic cell transplantation. Biology of Blood and Marrow Transplantation. 2011;17:1222–30. doi: 10.1016/j.bbmt.2010.12.708.
    1. Abbasi N, Vadnais B, Knutson JA, Blough DK, Kelly EJ, O’Donnell PV, Deeg HJ, Pawlikowski MA, Ho RJ, McCune JS. Pharmacogenetics of intravenous and oral busulfan in hematopoietic cell transplant recipients. The Journal of Clinical Pharmacology. 2011;51:1429–38. doi: 10.1177/0091270010382915.
    1. Gaziev J, Nguyen L, Puozzo C, Mozzi AF, Casella M, Perrone Donnorso M, Gravina P, Sodani P, Marziali M, Isgro A, Simone MD, Andreani M, Formosa A, et al. Novel pharmacokinetic behavior of intravenous busulfan in children with thalassemia undergoing hematopoietic stem cell transplantation: a prospective evaluation of pharmacokinetic and pharmacodynamic profile with therapeutic drug monitoring. Blood. 2010;115:4597–604. doi: 10.1182/blood-2010-01-265405.
    1. Elhasid R, Krivoy N, Rowe JM, Sprecher E, Adler L, Elkin H, Efrati E. Influence of glutathione S-transferase A1, P1, M1, T1 polymorphisms on oral busulfan pharmacokinetics in children with congenital hemoglobinopathies undergoing hematopoietic stem cell transplantation. Pediatric Blood & Cancer. 2010;55:1172–9. doi: 10.1002/pbc.22739.
    1. Johnson L, Orchard PJ, Baker KS, Brundage R, Cao Q, Wang X, Langer E, Farag-El Maasah S, Ross JA, Remmel R, Jacobson PA. Glutathione S-transferase A1 genetic variants reduce busulfan clearance in children undergoing hematopoietic cell transplantation. The Journal of Clinical Pharmacology. 2008;48:1052–62. doi: 10.1177/0091270008321940.
    1. Kim I, Keam B, Lee KH, Kim JH, Oh SY, Ra EK, Yoon SS, Park SS, Kim CS, Park S, Hong YC, Kim BK. Glutathione S-transferase A1 polymorphisms and acute graft-vs.-host disease in HLA-matched sibling allogeneic hematopoietic stem cell transplantation. Clinical Transplantation. 2007;21:207–13. doi: 10.1111/j.1399-0012.2006.00624.x.
    1. Kusama M, Kubota T, Matsukura Y, Matsuno K, Ogawa S, Kanda Y, Iga T. Influence of glutathione S-transferase A1 polymorphism on the pharmacokinetics of busulfan. Clinica Chimica Acta. 2006;368:93–8. doi: 10.1016/j.cca.2005.12.011.
    1. Gaziev J, Isgro A, Mozzi AF, Petain A, Nguyen L, Ialongo C, Dinallo V, Sodani P, Marziali M, Andreani M, Testi M, Paciaroni K, Gallucci C, et al. New insights into the pharmacokinetics of intravenous busulfan in children with sickle cell anemia undergoing bone marrow transplantation. Pediatric Blood & Cancer. 2015;62:680–6. doi: 10.1002/pbc.25376.
    1. Ten Brink MH, Swen JJ, Bohringer S, Wessels JA, van der Straaten T, Marijt EW, von dem Borne PA, Zwaveling J, Guchelaar HJ. Exploratory analysis of 1936 SNPs in ADME genes for association with busulfan clearance in adult hematopoietic stem cell recipients. Pharmacogenetics and Genomics. 2013;23:675–83. doi: 10.1097/FPC.0000000000000007.
    1. Zwaveling J, Press RR, Bredius RG, van Derstraaten TR, den Hartigh J, Bartelink IH, Boelens JJ, Guchelaar HJ. Glutathione S-transferase polymorphisms are not associated with population pharmacokinetic parameters of busulfan in pediatric patients. Therapeutic Drug Monitoring. 2008;30:504–10. doi: 10.1097/FTD.0b013e3181817428.
    1. Srivastava A, Poonkuzhali B, Shaji RV, George B, Mathews V, Chandy M, Krishnamoorthy R. Glutathione S-transferase M1 polymorphism: a risk factor for hepatic venoocclusive disease in bone marrow transplantation. Blood. 2004;104:1574–7. doi: 10.1182/blood-2003-11-3778.
    1. Ansari M, Lauzon-Joset JF, Vachon MF, Duval M, Theoret Y, Champagne MA, Krajinovic M. Influence of GST gene polymorphisms on busulfan pharmacokinetics in children. Bone Marrow Transplantation. 2010;45:261–7. doi: 10.1038/bmt.2009.143.
    1. Morel F, Rauch C, Coles B, Le Ferrec E, Guillouzo A. The human glutathione transferase alpha locus: genomic organization of the gene cluster and functional characterization of the genetic polymorphism in the hGSTA1 promoter. Pharmacogenetics. 2002;12:277–86.
    1. Hoensch H, Morgenstern I, Petereit G, Siepmann M, Peters WH, Roelofs HM, Kirch W. Influence of clinical factors, diet, and drugs on the human upper gastrointestinal glutathione system. Gut. 2002;50:235–40.
    1. Mulder TP, Court DA, Peters WH. Variability of glutathione S-transferase alpha in human liver and plasma. Clinical Chemistry. 1999;45:355–9.
    1. Mitchell AE, Burns SA, Rudolf JL. Isozyme- and gender-specific induction of glutathione S-transferases by flavonoids. Archives of Toxicology. 2007;81:777–84. doi: 10.1007/s00204-007-0210-9.
    1. Strange RC, Howie AF, Hume R, Matharoo B, Bell J, Hiley C, Jones P, Beckett GJ. The development expression of alpha-, mu- and pi-class glutathione S-transferases in human liver. Biochimica et Biophysica Acta. 1989;993:186–90.
    1. Diestelhorst C, Boos J, McCune JS, Russell J, Kangarloo SB, Hempel G. Physiologically based pharmacokinetic modelling of Busulfan: a new approach to describe and predict the pharmacokinetics in adults. Cancer Chemotherapy and Pharmacology. 2013;72:991–1000. doi: 10.1007/s00280-013-2275-x.
    1. Diestelhorst C, Boos J, McCune JS, Russell J, Kangarloo SB, Hempel G. Predictive performance of a physiologically based pharmacokinetic model of busulfan in children. Pediatric Hematology and Oncology. 2014;31:731–42. doi: 10.3109/08880018.2014.927945.
    1. Ekhart C, Doodeman VD, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD. Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenetics and Genomics. 2008;18:515–23. doi: 10.1097/FPC.0b013e3282fc9766.
    1. Wang HN, Zhu XY, Zhu Y, Xie QH, Lai LY, Zhao M, Chen YC, Xue J, Hao CM, Gu Y, Lin SY. The GSTA1 polymorphism and cyclophosphamide therapy outcomes in lupus nephritis patients. Clinical Immunology. 2015;160:342–8. doi: 10.1016/j.clim.2015.07.010.
    1. Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene. 2003;22:7369–75. doi: 10.1038/sj.onc.1206940.
    1. Martinez-Bravo MJ, Calderon-Cabrera C, Marquez-Malaver FJ, Rodriguez N, Guijarro M, Espigado I, Nunez-Roldan A, Perez-Simon JA, Aguilera I. Mismatch on glutathione S- transferase T1 increases the risk of graft-versus-host disease and mortality after allogeneic stem cell transplantation. Biology of Blood and Marrow Transplantation. 2014;20:1356–62. doi: 10.1016/j.bbmt.2014.05.008.
    1. Conklin DJ, Haberzettl P, Lesgards JF, Prough RA, Srivastava S, Bhatnagar A. Increased sensitivity of glutathione S-transferase P-null mice to cyclophosphamide-induced urinary bladder toxicity. Journal of Pharmacology and Experimental Therapeutics. 2009;331:456–69. doi: 10.1124/jpet.109.156513.
    1. Zhong S, Wyllie AH, Barnes D, Wolf CR, Spurr NK. Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis. 1993;14:1821–4.
    1. Gray RJ. A Class of K-Sample Tests for Comparing the Cumulative Incidence of a Competing Risk. The Annals of Statistics. 1988;16:1141–54.
    1. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5. doi: 10.1093/bioinformatics/bth457.
    1. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. The American Journal of Human Genetics. 2001;68:978–89. doi: 10.1086/319501.
    1. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplantation. 2013;48:452–8. doi: 10.1038/bmt.2012.244.

Source: PubMed

3
订阅