Phase I Study of BI 853520, an Inhibitor of Focal Adhesion Kinase, in Patients with Advanced or Metastatic Nonhematologic Malignancies

Maja J A de Jonge, Neeltje Steeghs, Martijn P Lolkema, Sebastien J Hotte, Hal W Hirte, Diane A J van der Biessen, Albiruni R Abdul Razak, Filip Y F L De Vos, Remy B Verheijen, David Schnell, Linda C Pronk, Monique Jansen, Lillian L Siu, Maja J A de Jonge, Neeltje Steeghs, Martijn P Lolkema, Sebastien J Hotte, Hal W Hirte, Diane A J van der Biessen, Albiruni R Abdul Razak, Filip Y F L De Vos, Remy B Verheijen, David Schnell, Linda C Pronk, Monique Jansen, Lillian L Siu

Abstract

Background: Overexpression/activation of focal adhesion kinase (FAK) in human malignancies has led to its evaluation as a therapeutic target. We report the first-in-human phase I study of BI 853520, a novel, potent, highly selective FAK inhibitor.

Objective: Our objectives were to identify the maximum tolerated dose (MTD), and to evaluate safety, pharmacokinetics (PK), pharmacodynamics (PD), biomarker expression, and preliminary activity.

Patients and methods: The study comprised a standard 3 + 3 dose-escalation phase followed by an expansion phase in patients with selected advanced, nonhematologic malignancies.

Results: Thirty-three patients received BI 853520 in the dose-escalation phase; the MTD was 200 mg once daily (QD). Dose-limiting toxicities included proteinuria and fatigue, both of which were grade 3. Preliminary PK data supported QD dosing. In the expansion cohort, 63 patients received BI 853520 200 mg QD. Drug-related adverse events (AEs) in > 10% of patients included proteinuria (57%), nausea (57%), fatigue (51%), diarrhea (48%), vomiting (40%), decreased appetite (19%), and peripheral edema (16%). Most AEs were grade 1-2; grade 3 proteinuria, reported in 13 patients (21%), was generally reversible upon treatment interruption. Nineteen patients underwent dose reduction due to AEs, and three drug-related serious AEs were reported, none of which were fatal. Preliminary PD analysis indicated target engagement. Of 63 patients, 49 were evaluable; 17 (27%) achieved a best response of stable disease (4 with 150 + days), and 32 (51%) patients had progressive disease.

Conclusions: BI 853520 has a manageable and acceptable safety profile, favorable PK, and modest antitumor activity at an MTD of 200 mg QD in patients with selected advanced nonhematologic malignancies. CLINICALTRIALS.

Gov identifier: NCT01335269.

Conflict of interest statement

Hal W. Hirte reports receiving honoraria from AstraZeneca, Roche and Merck; Albiruni R. Abdul Razak reports paid expert testimony for, and grants from, Boehringer Ingelheim; and Filip Y.F.L. De Vos reports paid expert testimony for Bristol Myers Squibb, and grants from Novartis. Remy B. Verheijen is an employee of AstraZeneca; David Schnell and Linda C. Pronk are employees of Boehringer Ingelheim; and Monique Jansen was an employee of Boehringer Ingelheim at the time of study conduct and manuscript preparation. Lillian L. Siu reports institutional clinical trial funding for this study provided by Boehringer Ingelheim. Maja J.A. de Jonge, Neeltje Steeghs, Martijn P. Lolkema, Sebastien J. Hotte, and Diane A.J. van der Biessen declare that they have no conflicts of interest.

Figures

Fig. 1
Fig. 1
Plasma concentration–time profiles for BI 853520 after single- and multiple-dose administration in the first cycle. Pharmacokinetic profiles after single- and multiple-dose administration were assessed during the first treatment cycle, i.e. after the first dose on day 1 and after repeated dosing on day 28
Fig. 2
Fig. 2
Individual (circle) and geometric mean (cross) PK parameters for BI 853520 after single- and multiple-dose administration in the first cycle. PK profiles after single- and multiple-dose administration were assessed during the first treatment cycle, i.e. after the first dose on day 1 and after repeated dosing on day 28. AUC area under the plasma concentration–time curve, Cmax maximum plasma concentration, gMean geometric mean, PK pharmacokinetic
Fig. 3
Fig. 3
Change from baseline to end of the first cycle in levels of phosphorylated FAK/total FAK in tumor tissue (expansion cohort; 200 mg QD). FAK focal adhesion kinase, QD once daily
Fig. 4
Fig. 4
Confirmed best overall tumor response and treatment duration by tumor type (expansion cohort; 200 mg QD). AE adverse event, QD once daily

References

    1. Zhao J, Guan JL. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev. 2009;28(1–2):35–49. doi: 10.1007/s10555-008-9165-4.
    1. Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer. 2014;14(9):598–610. doi: 10.1038/nrc3792.
    1. Tai YL, Chen LC, Shen TL. Emerging roles of focal adhesion kinase in cancer. Biomed Res Int. 2015;2015:690690.
    1. Lee BY, Timpson P, Horvath LG, Daly RJ. FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther. 2015;146:132–149. doi: 10.1016/j.pharmthera.2014.10.001.
    1. Kornberg LJ. Focal adhesion kinase and its potential involvement in tumor invasion and metastasis. Head Neck. 1998;20(8):745–752. doi: 10.1002/(SICI)1097-0347(199812)20:8<745::AID-HED14>;2-Z.
    1. Oktay MH, Oktay K, Hamele-Bena D, Buyuk A, Koss LG. Focal adhesion kinase as a marker of malignant phenotype in breast and cervical carcinomas. Hum Pathol. 2003;34(3):240–245. doi: 10.1053/hupa.2003.40.
    1. Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L, et al. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res. 1995;55(13):2752–2755.
    1. Lark AL, Livasy CA, Calvo B, Caskey L, Moore DT, Yang X, et al. Overexpression of focal adhesion kinase in primary colorectal carcinomas and colorectal liver metastases: immunohistochemistry and real-time PCR analyses. Clin Cancer Res. 2003;9(1):215–222.
    1. Judson PL, He X, Cance WG, Van LL. Overexpression of focal adhesion kinase, a protein tyrosine kinase, in ovarian carcinoma. Cancer. 1999;86(8):1551–1556. doi: 10.1002/(SICI)1097-0142(19991015)86:6<1551::AID-CNCR23>;2-P.
    1. Tremblay L, Hauck W, Aprikian AG, Begin LR, Chapdelaine A, Chevalier S. Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. Int J Cancer. 1996;68(2):164–171. doi: 10.1002/(SICI)1097-0215(19961009)68:2<169::AID-IJC4>;2-W.
    1. Weiner TM, Liu ET, Craven RJ, Cance WG. Expression of focal adhesion kinase gene and invasive cancer. Lancet. 1993;342(8878):1024–1025. doi: 10.1016/0140-6736(93)92881-S.
    1. Zhang J, Hochwald SN. The role of FAK in tumor metabolism and therapy. Pharmacol Ther. 2014;142(2):154–163. doi: 10.1016/j.pharmthera.2013.12.003.
    1. Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA, et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med. 2016;22(8):851–860. doi: 10.1038/nm.4123.
    1. Serrels A, Lund T, Serrels B, Byron A, McPherson RC, von Kriegsheim A, et al. Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-tumor immunity. Cell. 2015;163(1):160–173. doi: 10.1016/j.cell.2015.09.001.
    1. Bagi CM, Roberts GW, Andresen CJ. Dual focal adhesion kinase/Pyk2 inhibitor has positive effects on bone tumors: implications for bone metastases. Cancer. 2008;112(10):2313–2321. doi: 10.1002/cncr.23429.
    1. Halder J, Kamat AA, Landen CN, Jr, Han LY, Lutgendorf SK, Lin YG, et al. Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res. 2006;12(16):4916–4924. doi: 10.1158/1078-0432.CCR-06-0021.
    1. Parsons JT, Slack-Davis J, Tilghman R, Roberts WG. Focal adhesion kinase: targeting adhesion signaling pathways for therapeutic intervention. Clin Cancer Res. 2008;14(3):627–632. doi: 10.1158/1078-0432.CCR-07-2220.
    1. Roberts WG, Ung E, Whalen P, Cooper B, Hulford C, Autry C, et al. Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res. 2008;68(6):1935–1944. doi: 10.1158/0008-5472.CAN-07-5155.
    1. Roy-Luzarraga M, Hodivala-Dilke K. Molecular pathways: endothelial cell FAK-A target for cancer treatment. Clin Cancer Res. 2016;22(15):3718–3724. doi: 10.1158/1078-0432.CCR-14-2021.
    1. Shi Q, Hjelmeland AB, Keir ST, Song L, Wickman S, Jackson D, et al. A novel low-molecular weight inhibitor of focal adhesion kinase, TAE226, inhibits glioma growth. Mol Carcinog. 2007;46(6):488–496. doi: 10.1002/mc.20297.
    1. Infante JR, Camidge DR, Mileshkin LR, Chen EX, Hicks RJ, Rischin D, et al. Safety, pharmacokinetic, and pharmacodynamic phase I dose-escalation trial of PF-00562271, an inhibitor of focal adhesion kinase, in advanced solid tumors. J Clin Oncol. 2012;30(13):1527–1533. doi: 10.1200/JCO.2011.38.9346.
    1. Jones SF, Siu LL, Bendell JC, Cleary JM, Razak AR, Infante JR, et al. A phase I study of VS-6063, a second-generation focal adhesion kinase inhibitor, in patients with advanced solid tumors. Invest New Drugs. 2015;33(5):1100–1107. doi: 10.1007/s10637-015-0282-y.
    1. Shimizu T, Fukuoka K, Takeda M, Iwasa T, Yoshida T, Horobin J, et al. A first-in-Asian phase 1 study to evaluate safety, pharmacokinetics and clinical activity of VS-6063, a focal adhesion kinase (FAK) inhibitor in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 2016;77(5):997–1003. doi: 10.1007/s00280-016-3010-1.
    1. Soria JC, Gan HK, Blagden SP, Plummer R, Arkenau HT, Ranson M, et al. A phase I, pharmacokinetic and pharmacodynamic study of GSK2256098, a focal adhesion kinase inhibitor, in patients with advanced solid tumors. Ann Oncol. 2016;27(12):2268–2274. doi: 10.1093/annonc/mdw427.
    1. Hirt UA, Braunger J, Schleicher M, Weyer-Czemilofsky U, Garin-Chesa P, Bister B, et al. BI 853520, a potent and highly selective inhibitor of protein tyrosine kinase 2 (focal adhesion kinase), shows efficacy in multiple xenograft models of human cancer [abstract no. A249] Mol Cancer Ther. 2011;10(11 Suppl):A249. doi: 10.1158/1535-7163.TARG-11-A249.
    1. Hirt UA, Waizenegger IC, Schweifer N, Haslinger C, Gerlach D, Braunger J, et al. Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype. Oncogenesis. 2018;7(2):21. doi: 10.1038/s41389-018-0032-z.
    1. Auger KR, Smitheman KN, Korenchuk S, McHugh C, Kruger R, Van Aller GS, et al. The focal adhesion kinase inhibitor GSK2256098: a potent and selective inhibitor for the treatment of cancer [abstract no. 387] Eur J Cancer. 2012;48:118. doi: 10.1016/S0959-8049(12)72185-8.
    1. Tiede S, Meyer-Schaller N, Kalathur RKR, Ivanek R, Fagiani E, Schmassmann P, et al. The FAK inhibitor BI 853520 exerts anti-tumor effects in breast cancer. Oncogenesis. 2018;7(9):73. doi: 10.1038/s41389-018-0083-1.
    1. National Institute of Health. National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.03). 2009. . Accessed 2 Aug 2017.
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45(2):228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Boehringer Ingelheim. Data on file. c01566501–04.
    1. Ma H, Togawa A, Soda K, Zhang J, Lee S, Ma M, et al. Inhibition of podocyte FAK protects against proteinuria and foot process effacement. J Am Soc Nephrol. 2010;21(7):1145–1156. doi: 10.1681/ASN.2009090991.
    1. Yuan X, Wang W, Wang J, Yin X, Zhai X, Wang L, et al. Down-regulation of integrin beta1 and focal adhesion kinase in renal glomeruli under various hemodynamic conditions. PLoS One. 2014;9(4):e94212. doi: 10.1371/journal.pone.0094212.
    1. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28(1–2):15–33. doi: 10.1007/s10555-008-9169-0.
    1. Arkenau H-T, Gazzah A, Plummer R, Blagden SP, Mak G, Soria J-C, et al. A phase Ib dose-escalation study of GSK2256098 (FAKi) plus trametinib (MEKi) in patients with selected advanced solid tumors [abstract no. 2593] J Clin Oncol. 2015;33(15 Suppl):2593. doi: 10.1200/jco.2015.33.15_suppl.2593.
    1. Moen I, Gebre M, Alonso-Camino V, Chen D, Epstein D, McDonald DM. Anti-metastatic action of FAK inhibitor OXA-11 in combination with VEGFR-2 signaling blockade in pancreatic neuroendocrine tumors. Clin Exp Metastasis. 2015;32(8):799–817. doi: 10.1007/s10585-015-9752-z.
    1. Patel MR, Infante JR, Moore KN, Keegan M, Poli A, Padval M, et al. Phase 1/1b study of the FAK inhibitor defactinib (VS-6063) in combination with weekly paclitaxel for advanced ovarian cancer [abstract no. 5521] J Clin Oncol. 2014;32(15 Suppl):5521. doi: 10.1200/jco.2014.32.15_suppl.5521.
    1. Wang DD, Chen Y, Chen ZB, Yan FJ, Dai XY, Ying MD, et al. CT-707, a novel FAK inhibitor, synergizes with cabozantinib to suppress hepatocellular carcinoma by blocking cabozantinib-induced FAK activation. Mol Cancer Ther. 2016;15(12):2916–2925. doi: 10.1158/1535-7163.MCT-16-0282.
    1. Wang-Gillam A, Lockhart AC, Tan BR, Suresh R, Lim K-H, Ratner L, et al. Phase I study of defactinib combined with pembrolizumab and gemcitabine in patients with advanced cancer [abstract no. 2561] J Clin Oncol. 2018;36(15 Suppl):2561. doi: 10.1200/JCO.2018.36.15_suppl.2561.
    1. Doi T, Yang JC-H, Shitara K, Naito Y, Cheng A-L, Sarashina A, et al. Phase I study of the focal adhesion kinase inhibitor BI 853520 in Japanese and Taiwanese patients with advanced or metastatic solid tumors. Target Oncol. 2019

Source: PubMed

3
订阅