Advances in Molecular Profiling and Categorisation of Pancreatic Adenocarcinoma and the Implications for Therapy

Rille Pihlak, Jamie M J Weaver, Juan W Valle, Mairéad G McNamara, Rille Pihlak, Jamie M J Weaver, Juan W Valle, Mairéad G McNamara

Abstract

Pancreatic ductal adenocarcinoma (PDAC) continues to be a disease with poor outcomes and short-lived treatment responses. New information is emerging from genome sequencing identifying potential subgroups based on somatic and germline mutations. A variety of different mutations and mutational signatures have been identified; the driver mutation in around 93% of PDAC is KRAS, with other recorded alterations being SMAD4 and CDKN2A. Mutations in the deoxyribonucleic acid (DNA) damage repair pathway have also been investigated in PDAC and multiple clinical trials are ongoing with DNA-damaging agents. Rare mutations in BRAF and microsatellite instability (MSI) have been reported in about 1-3% of patients with PDAC, and agents used in other cancers to target these have also shown some promise. Immunotherapy is a developing field, but has failed to demonstrate benefits in PDAC to date. While many trials have failed to improve outcomes in this deadly disease, there is optimism that by developing a better understanding of the translational aspects of this cancer, future informed therapeutic strategies may prove more successful.

Keywords: clinical implications; molecular profiling; mutations; pancreatic adenocarcinoma.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Prevalence of potentially targetable mutations in PDAC. KRAS—KRAS proto-oncogene, GTPase [33,35]; TP53—tumour protein p53 [59]; SMAD4—SMAD Family Member 4 [19,67]; DDR—DNA damage repair pathway mutations [18,19]; CDKN2A—cyclin-dependent kinase inhibitor 2A [12,75]; RNF43—ring finger protein 43 [19,24]; BRAF B-Raf proto-oncogene, serine/threonine kinase [82]; MSI—microsatellite instability [84]. Dark colour signifies minimal range of mutation reported, while lighter shade signifies maximum range of mutation reported within different references.

References

    1. De Angelis R., Sant M., Coleman M.P., Francisci S., Baili P., Pierannunzio D., Trama A., Visser O., Brenner H., Ardanaz E., et al. Cancer survival in europe 1999–2007 by country and age: Results of EUROCARE-5—a population-based study. Lancet Oncol. 2014;15:23–34. doi: 10.1016/S1470-2045(13)70546-1.
    1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2017. CA: Cancer J. Clin. 2017;67:7–30. doi: 10.3322/caac.21387.
    1. Cancer Research UK, Cancer Statistics, Pancreatic Cancer Statistics. [(accessed on 30 November 2017)]; Available online: .
    1. Neoptolemos J.P., Palmer D.H., Ghaneh P., Psarelli E.E., Valle J.W., Halloran C.M., Faluyi O., O’Reilly D.A., Cunningham D., Wadsley J., et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): A multicentre, open-label, randomised, phase 3 trial. Lancet. 2017;389:1011–1024. doi: 10.1016/S0140-6736(16)32409-6.
    1. Conroy T., Desseigne F., Ychou M., Bouche O., Guimbaud R., Becouarn Y., Adenis A., Raoul J.L., Gourgou-Bourgade S., de la Fouchardiere C., et al. Folfirinox versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 2011;364:1817–1825. doi: 10.1056/NEJMoa1011923.
    1. Von Hoff D.D., Ervin T., Arena F.P., Chiorean E.G., Infante J., Moore M., Seay T., Tjulandin S.A., Ma W.W., Saleh M.N., et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013;369:1691–1703. doi: 10.1056/NEJMoa1304369.
    1. Goel G., Sun W. Novel approaches in the management of pancreatic ductal adenocarcinoma: Potential promises for the future. J. Hematol. Oncol. 2015;8:44. doi: 10.1186/s13045-015-0141-5.
    1. Van Cutsem E., van de Velde H., Karasek P., Oettle H., Vervenne W.L., Szawlowski A., Schoffski P., Post S., Verslype C., Neumann H., et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J. Clin. 2004;22:1430–1438. doi: 10.1200/JCO.2004.10.112.
    1. Fuchs C.S., Azevedo S., Okusaka T., Van Laethem J.L., Lipton L.R., Riess H., Szczylik C., Moore M.J., Peeters M., Bodoky G., et al. A phase 3 randomized, double-blind, placebo-controlled trial of ganitumab or placebo in combination with gemcitabine as first-line therapy for metastatic adenocarcinoma of the pancreas: The gamma trial. Ann. Oncol. 2015;26:921–927. doi: 10.1093/annonc/mdv027.
    1. Middleton G., Palmer D.H., Greenhalf W., Ghaneh P., Jackson R., Cox T., Evans A., Shaw V.E., Wadsley J., Valle J.W., et al. Vandetanib plus gemcitabine versus placebo plus gemcitabine in locally advanced or metastatic pancreatic carcinoma (ViP): A prospective, randomised, double-blind, multicentre phase 2 trial. Lancet Oncol. 2017;18:486–499. doi: 10.1016/S1470-2045(17)30084-0.
    1. Rahib L., Smith B.D., Aizenberg R., Rosenzweig A.B., Fleshman J.M., Matrisian L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the united states. Cancer Res. 2014;74:2913–2921. doi: 10.1158/0008-5472.CAN-14-0155.
    1. Salo-Mullen E.E., O’Reilly E.M., Kelsen D.P., Ashraf A.M., Lowery M.A., Yu K.H., Reidy D.L., Epstein A.S., Lincoln A., Saldia A., et al. Identification of germline genetic mutations in patients with pancreatic cancer. Cancer. 2015;121:4382–4388. doi: 10.1002/cncr.29664.
    1. Lal G., Liu G., Schmocker B., Kaurah P., Ozcelik H., Narod S.A., Redston M., Gallinger S. Inherited predisposition to pancreatic adenocarcinoma: Role of family history and germ-line p16, BRCA1, and BRCA2 mutations. Cancer Res. 2000;60:409–416.
    1. Cowgill S.M., Muscarella P. The genetics of pancreatic cancer. Am. J. Surg. 2003;186:279–286. doi: 10.1016/S0002-9610(03)00226-5.
    1. Gupta C., Mazzara P.F. High-grade pancreatic intraepithelial neoplasia in a patient with familial adenomatous polyposis. Arch. Pathol. Lab. Med. 2005;129:1398–1400.
    1. Vasen H.F., Gruis N.A., Frants R.R., van Der Velden P.A., Hille E.T., Bergman W. Risk of developing pancreatic cancer in families with familial atypical multiple mole melanoma associated with a specific 19 deletion of p16 (p16-Leiden) Int. J. Cancer. 2000;87:809–811. doi: 10.1002/1097-0215(20000915)87:6<809::AID-IJC8>;2-U.
    1. Lowenfels A.B., Maisonneuve P., DiMagno E.P., Elitsur Y., Gates L.K., Jr., Perrault J., Whitcomb D.C. Hereditary pancreatitis and the risk of pancreatic cancer. International hereditary pancreatitis study group. J. Nat. Cancer Inst. 1997;89:442–446. doi: 10.1093/jnci/89.6.442.
    1. Shindo K., Yu J., Suenaga M., Fesharakizadeh S., Cho C., Macgregor-Das A., Siddiqui A., Witmer P.D., Tamura K., Song T.J., et al. Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J. Clin. Oncol. 2017;35:3382–3390. doi: 10.1200/JCO.2017.72.3502.
    1. Waddell N., Pajic M., Patch A.-M., Chang D.K., Kassahn K.S., Bailey P., Johns A.L., Miller D., Nones K., Quek K., et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518:495–501. doi: 10.1038/nature14169.
    1. Alexandrov L.B., Nik-Zainal S., Wedge D.C., Aparicio S.A.J.R., Behjati S., Biankin A.V., Bignell G.R., Bolli N., Borg A., Borresen-Dale A.-L., et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–421. doi: 10.1038/nature12477.
    1. Catalogue of Somatic Mutations in Cancer. Signatures of Mutational Processes in Human Cancer. [(accessed on 30 November 2017)]; Available online: .
    1. Le D.T., Durham J.N., Smith K.N., Wang H., Bartlett B.R., Aulakh L.K., Lu S., Kemberling H., Wilt C., Luber B.S., et al. Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–413. doi: 10.1126/science.aan6733.
    1. Frey M.K., Pothuri B. Homologous recombination deficiency (hrd) testing in ovarian cancer clinical practice: A review of the literature. Gynecol. Oncol. Res. Pract. 2017;4:4. doi: 10.1186/s40661-017-0039-8.
    1. Bailey P., Chang D.K., Nones K., Johns A.L., Patch A.M., Gingras M.C., Miller D.K., Christ A.N., Bruxner T.J., Quinn M.C., et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531:47–52. doi: 10.1038/nature16965.
    1. Madan B., Ke Z., Harmston N., Ho S.Y., Frois A.O., Alam J., Jeyaraj D.A., Pendharkar V., Ghosh K., Virshup I.H., et al. Wnt addiction of genetically defined cancers reversed by porcn inhibition. Oncogene. 2016;35:2197–2207. doi: 10.1038/onc.2015.280.
    1. Gao J., Adams R.P., Swain S.M. Does CDKN2A loss predict palbociclib benefit? Curr. Oncol. 2015;22:e498–e501. doi: 10.3747/co.22.2700.
    1. Jamal-Hanjani M., Wilson G.A., McGranahan N., Birkbak N.J., Watkins T.B.K., Veeriah S., Shafi S., Johnson D.H., Mitter R., Rosenthal R., et al. Tracking the evolution of non–small-cell lung cancer. N. Engl. J. Med. 2017;376:2109–2121. doi: 10.1056/NEJMoa1616288.
    1. Wilentz R.E., Geradts J., Maynard R., Offerhaus G.J., Kang M., Goggins M., Yeo C.J., Kern S.E., Hruban R.H. Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: Loss of intranuclear expression. Cancer Res. 1998;58:4740–4744.
    1. Wilentz R.E., Iacobuzio-Donahue C.A., Argani P., McCarthy D.M., Parsons J.L., Yeo C.J., Kern S.E., Hruban R.H. Loss of expression of DPC4 in pancreatic intraepithelial neoplasia: Evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res. 2000;60:2002–2006.
    1. Moskaluk C.A., Hruban R.H., Kern S.E. P16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res. 1997;57:2140–2143.
    1. Notta F., Chan-Seng-Yue M., Lemire M., Li Y., Wilson G.W., Connor A.A., Denroche R.E., Liang S.B., Brown A.M., Kim J.C., et al. A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature. 2016;538:378–382. doi: 10.1038/nature19823.
    1. Makohon-Moore A.P., Zhang M., Reiter J.G., Bozic I., Allen B., Kundu D., Chatterjee K., Wong F., Jiao Y., Kohutek Z.A., et al. Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat. Genet. 2017;49:358–366. doi: 10.1038/ng.3764.
    1. Raphael B.J., Hruban R.H., Aguirre A.J., Moffitt R.A., Yeh J.J., Stewart C., Robertson A.G., Cherniack A.D., Gupta M., Getz G., et al. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell. 2017;32:185–203.e113. doi: 10.1016/j.ccell.2017.07.007.
    1. Moffitt R.A., Marayati R., Flate E.L., Volmar K.E., Loeza S.G., Hoadley K.A., Rashid N.U., Williams L.A., Eaton S.C., Chung A.H., et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 2015;47:1168–1178. doi: 10.1038/ng.3398.
    1. Biankin A.V., Waddell N., Kassahn K.S., Gingras M.C., Muthuswamy L.B., Johns A.L., Miller D.K., Wilson P.J., Patch A.M., Wu J., et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491:399–405. doi: 10.1038/nature11547.
    1. Bournet B., Buscail C., Muscari F., Cordelier P., Buscail L. Targeting kras for diagnosis, prognosis, and treatment of pancreatic cancer: Hopes and realities. Eur. J. Cancer. 2016;54:75–83. doi: 10.1016/j.ejca.2015.11.012.
    1. Bodoky G., Timcheva C., Spigel D.R., La Stella P.J., Ciuleanu T.E., Pover G., Tebbutt N.C. A phase II open-label randomized study to assess the efficacy and safety of selumetinib (AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line gemcitabine therapy. Investig. New Drugs. 2012;30:1216–1223. doi: 10.1007/s10637-011-9687-4.
    1. Lorusso P.M., Adjei A.A., Varterasian M., Gadgeel S., Reid J., Mitchell D.Y., Hanson L., DeLuca P., Bruzek L., Piens J., et al. Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J. Clin. Oncol. 2005;23:5281–5293. doi: 10.1200/JCO.2005.14.415.
    1. Lowery M.A., Kelsen D.P., Stadler Z.K., Yu K.H., Janjigian Y.Y., Ludwig E., D’Adamo D.R., Salo-Mullen E., Robson M.E., Allen P.J., et al. An emerging entity: Pancreatic adenocarcinoma associated with a known brca mutation: Clinical descriptors, treatment implications, and future directions. Oncologist. 2011;16:1397–1402. doi: 10.1634/theoncologist.2011-0185.
    1. Golan T., Kanji Z.S., Epelbaum R., Devaud N., Dagan E., Holter S., Aderka D., Paluch-Shimon S., Kaufman B., Gershoni-Baruch R., et al. Overall survival and clinical characteristics of pancreatic cancer in brca mutation carriers. Br. J. Cancer. 2014;111:1132–1138. doi: 10.1038/bjc.2014.418.
    1. Aung K.L., Holter S., Borgida A., Connor A., Pintilie M., Dhani N.C., Hedley D.W., Knox J.J., Gallinger S. Overall survival of patients with pancreatic adenocarcinoma and BRCA1 or BRCA2 germline mutation. J. Clin. Oncol. 2016;34:4123.
    1. Ledermann J., Harter P., Gourley C., Friedlander M., Vergote I., Rustin G., Scott C.L., Meier W., Shapira-Frommer R., Safra T., et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: A preplanned retrospective analysis of outcomes by brca status in a randomised phase 2 trial. Lancet Oncol. 2014;15:852–861. doi: 10.1016/S1470-2045(14)70228-1.
    1. Kaufman B., Shapira-Frommer R., Schmutzler R.K., Audeh M.W., Friedlander M., Balmana J., Mitchell G., Fried G., Stemmer S.M., Hubert A., et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 2015;33:244–250. doi: 10.1200/JCO.2014.56.2728.
    1. Riaz N., Blecua P., Lim R.S., Shen R., Higginson D.S., Weinhold N., Norton L., Weigelt B., Powell S.N., Reis-Filho J.S. Pan-cancer analysis of BI-allelic alterations in homologous recombination DNA repair genes. Nat. Commun. 2017;8:857. doi: 10.1038/s41467-017-00921-w.
    1. National Cancer Institute (NCI) A Randomized Phase II Study of Gemcitabine, Cisplatin +/− Veliparib in Patients with Pancreas Adenocarcinoma and a Known BRCA/ PALB2 Mutation (Part I) and a Phase II Single Arm Study of Single-Agent Veliparib in Previously Treated Pancreas Adenocarcinoma (Part II) [(accessed on 30 November 2017)]; Available online: .
    1. AstraZeneca A Phase III, Randomised, Double Blind, Placebo Controlled, Multicentre Study of Maintenance Olaparib Monotherapy in Patients with gBRCA Mutated Metastatic Pancreatic Cancer Whose Disease Has Not Progressed on First Line Platinum Based Chemotherapy. [(accessed on 30 November 2017)]; Available online: .
    1. Perkhofer L., Schmitt A., Romero Carrasco M.C., Ihle M., Hampp S., Ruess D.A., Hessmann E., Russell R., Lechel A., Azoitei N., et al. ATM deficiency generating genomic instability sensitizes pancreatic ductal adenocarcinoma cells to therapy-induced DNA damage. Cancer Res. 2017;77:5576–5590. doi: 10.1158/0008-5472.CAN-17-0634.
    1. McCabe N., Turner N.C., Lord C.J., Kluzek K., Bialkowska A., Swift S., Giavara S., O’Connor M.J., Tutt A.N., Zdzienicka M.Z., et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 2006;66:8109–8115. doi: 10.1158/0008-5472.CAN-06-0140.
    1. Lord C.J., Ashworth A. Brcaness revisited. Nat. Rev. Cancer. 2016;16:110–120. doi: 10.1038/nrc.2015.21.
    1. Polak P., Kim J., Braunstein L.Z., Karlic R., Haradhavala N.J., Tiao G., Rosebrock D., Livitz D., Kübler K., Mouw K.W., et al. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat. Genet. 2017;49:1476. doi: 10.1038/ng.3934.
    1. MD Anderson Cancer Center Olaparib for Brcaness Phenotype in Pancreatic Cancer: Phase II Study. [(accessed on 30 November 2017)]; Available online: .
    1. Weber A.M., Ryan A.J. Atm and atr as therapeutic targets in cancer. Pharmacol.Ther. 2015;149:124–138. doi: 10.1016/j.pharmthera.2014.12.001.
    1. Royal Marsden NHS Foundation Trust A Phase I Study to Assess the Tolerability, Safety and Biological Effects of ATR Inhibitor (AZD6738) as a Single Agent and in Combination with Palliative Radiation Therapy in Patients with Solid Tumours. [(accessed on 30 November 2017)]; Available online: .
    1. AstraZeneca A Modular Phase I, Open-Label, Multicentre Study to Assess the Safety, Tolerability, Pharmacokinetics and Preliminary Anti-Tumour Activity of AZD6738 in Combination with Cytotoxic Chemotherapy and/or DNA Damage Repair/Novel Anti-Cancer Agents in Patients with Advanced Solid Malignancies. [(accessed on 30 November 2017)]; Available online: .
    1. Kim H., Saka B., Knight S., Borges M., Childs E., Klein A., Wolfgang C., Herman J., Adsay V.N., Hruban R.H., et al. Having pancreatic cancer with tumoral loss of ATM and normal TP53 protein expression is associated with a poorer prognosis. Clin. Cancer Res. 2014;20:1865–1872. doi: 10.1158/1078-0432.CCR-13-1239.
    1. Russell R., Perkhofer L., Liebau S., Lin Q., Lechel A., Feld F.M., Hessmann E., Gaedcke J., Guthle M., Zenke M., et al. Loss of ATM accelerates pancreatic cancer formation and epithelial-mesenchymal transition. Nat. Commun. 2015;6:7677. doi: 10.1038/ncomms8677.
    1. Drosos Y., Escobar D., Chiang M.Y., Roys K., Valentine V., Valentine M.B., Rehg J.E., Sahai V., Begley L.A., Ye J., et al. Atm-deficiency increases genomic instability and metastatic potential in a mouse model of pancreatic cancer. Sci. Rep. 2017;7:11144. doi: 10.1038/s41598-017-11661-8.
    1. Ayars M., Eshleman J., Goggins M. Susceptibility of ATM-deficient pancreatic cancer cells to radiation. Cell Cycle. 2017;16:991–998. doi: 10.1080/15384101.2017.1312236.
    1. Morton J.P., Timpson P., Karim S.A., Ridgway R.A., Athineos D., Doyle B., Jamieson N.B., Oien K.A., Lowy A.M., Brunton V.G., et al. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc. Natl. Acad. Sci. USA. 2010;107:246–251. doi: 10.1073/pnas.0908428107.
    1. Weissmueller S., Manchado E., Saborowski M., Morris J.P., Wagenblast E., Davis C.A., Moon S.H., Pfister N.T., Tschaharganeh D.F., Kitzing T., et al. Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling. Cell. 2014;157:382–394. doi: 10.1016/j.cell.2014.01.066.
    1. Dhayat S.A., Mardin W.A., Seggewiss J., Strose A.J., Matuszcak C., Hummel R., Senninger N., Mees S.T., Haier J. Microrna profiling implies new markers of gemcitabine chemoresistance in mutant p53 pancreatic ductal adenocarcinoma. PLoS ONE. 2015;10:e0143755. doi: 10.1371/journal.pone.0143755.
    1. Oza A.M., Weberpals J.I., Provencher D.M., Grischke E.-M., Hall M., Uyar D., Estevez-Diz M.D.P., Marmé F., Kuzmin A., Rosenberg P., et al. An international, biomarker-directed, randomized, phase II trial of AZD1775 plus paclitaxel and carboplatin (p/C) for the treatment of women with platinum-sensitive, TP53-mutant ovarian cancer. J. Clin. Oncol. 2015;33:5506.
    1. Gourley C., Green J., Gabra H., Vergote I., Basu B., Brenton J.D., Björklund U., Smith A.M., Euler M.V. PISARRO: A EUTROC phase Ib study of APR-246 in combination with carboplatin (C) and pegylated liposomal doxorubicin (PLD) in platinum sensitive relapsed high grade serous ovarian cancer (HGSOC) J. Clin. Oncol. 2016;34:5571.
    1. A Phase Ib/2 Study Evaluating the Efficacy of APR-246, a First-In-Class Agent Targeting Mutant p53 in the Treatment of Platinum Resistant Advanced and Metastatic Oesophageal or Gastro-Oesophageal Junction Cancers. [(accessed on 30 November 2017)]; Available online: .
    1. Phase II, Single-Arm Study of AZD1775 Monotherapy in Relapsed Small Cell Lung Cancer Patients with MYC Family Amplification or CDKN2A Mutation Combined with TP53 Mutation. [(accessed on 30 November 2017)]; Available online: .
    1. A Multicentre Phase II Study of AZD1775 Plus Chemotherapy in Patients with Platinum-Resistant Epithelial Ovarian, Fallopian Tube, or Primary Peritoneal Cancer. [(accessed on 30 November 2017)]; Available online: .
    1. Ormanns S., Haas M., Remold A., Kruger S., Holdenrieder S., Kirchner T., Heinemann V., Boeck S. The impact of SMAD4 loss on outcome in patients with advanced pancreatic cancer treated with systemic chemotherapy. Int. J. Mol. Sci. 2017;18:1094. doi: 10.3390/ijms18051094.
    1. Xia X., Wu W., Huang C., Cen G., Jiang T., Cao J., Huang K., Qiu Z. SMAD4 and its role in pancreatic cancer. Tumour Boil. 2015;36:111–119. doi: 10.1007/s13277-014-2883-z.
    1. Crane C.H., Varadhachary G.R., Yordy J.S., Staerkel G.A., Javle M.M., Safran H., Haque W., Hobbs B.D., Krishnan S., Fleming J.B., et al. Phase II trial of cetuximab, gemcitabine, and oxaliplatin followed by chemoradiation with cetuximab for locally advanced (T4) pancreatic adenocarcinoma: Correlation of SMAD4(DPC4) immunostaining with pattern of disease progression. J. Clin. Oncol. 2011;29:3037–3043. doi: 10.1200/JCO.2010.33.8038.
    1. Ottenhof N.A., Morsink F.H.M., ten Kate F., van Noorden C.J.F., Offerhaus G.J.A. Multivariate analysis of immunohistochemical evaluation of protein expression in pancreatic ductal adenocarcinoma reveals prognostic significance for persistent SMAD4 expression only. Cell. Oncol. 2012;35:119–126. doi: 10.1007/s13402-012-0072-x.
    1. Shin S.H., Kim H.J., Hwang D.W., Lee J.H., Song K.B., Jun E., Shim I.K., Hong S.M., Kim H.J., Park K.M., et al. The DPC4/SMAD4 genetic status determines recurrence patterns and treatment outcomes in resected pancreatic ductal adenocarcinoma: A prospective cohort study. Oncotarget. 2017;8:17945–17959.
    1. Shugang X., Hongfa Y., Jianpeng L., Xu Z., Jingqi F., Xiangxiang L., Wei L. Prognostic value of SMAD4 in pancreatic cancer: A meta-analysis. Trans. Oncol. 2016;9:1–7. doi: 10.1016/j.tranon.2015.11.007.
    1. Dey P., Baddour J., Muller F., Wu C.C., Wang H., Liao W.-T., Lan Z., Chen A., Gutschner T., Kang Y., et al. Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature. 2017;542:119–123. doi: 10.1038/nature21052.
    1. Soura E., Eliades P., Shannon K., Stratigos A., Tsao H. Hereditary melanoma: Update on syndromes and management—Genetics of familial atypical multiple mole melanoma syndrome. J. Am. Acad. Der. 2016;74:395–407. doi: 10.1016/j.jaad.2015.08.038.
    1. Ghiorzo P., Fornarini G., Sciallero S., Battistuzzi L., Belli F., Bernard L., Bonelli L., Borgonovo G., Bruno W., De Cian F., et al. CDKN2A is the main susceptibility gene in italian pancreatic cancer families. J. Med. Genet. 2012;49:164–170. doi: 10.1136/jmedgenet-2011-100281.
    1. Oshima M., Okano K., Muraki S., Haba R., Maeba T., Suzuki Y., Yachida S. Immunohistochemically detected expression of 3 major genes (CDKN2A/p16, TP53, and SMAD4/DPC4) strongly predicts survival in patients with resectable pancreatic cancer. Ann. Surg. 2013;258:336–346. doi: 10.1097/SLA.0b013e3182827a65.
    1. Phase II Study of Ilorasertib (ABT348) in Patients with CDKN2A Deficient Solid Tumors. [(accessed on 30 November 2017)]; Available online: .
    1. Elvin J.A., Gay L.M., Ort R., Shuluk J., Long J., Shelley L., Lee R., Chalmers Z.R., Frampton G.M., Ali S.M., et al. Clinical benefit in response to palbociclib treatment in refractory uterine leiomyosarcomas with a common CDKN2A alteration. Ooncologist. 2017;22:416–421. doi: 10.1634/theoncologist.2016-0310.
    1. Chou A., Froio D., Nagrial A.M., Parkin A., Murphy K.J., Chin V.T., Wohl D., Steinmann A., Stark R., Drury A., et al. Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer. Gut. 2017 doi: 10.1136/gutjnl-2017-315144.
    1. An Open-Label Phase Ib Study of Palbociclib (Oral CDK 4/6 Inhibitor) Plus Abraxane (Registered) (Nab-Paclitaxel) in Patients with Metastatic Pancreatic Ductal Adenocarcinoma. [(accessed on 30 November 2017)]; Available online: .
    1. Phase I Study of the CDK4/6 Inhibitor Palbociclib (PD-0332991) in Combination with the PI3K/mTOR Inhibitor Gedatolisib (PF-05212384) for Patients with Advanced Squamous Cell Lung, Pancreatic, Head & Neck and Other Solid Tumors. [(accessed on 30 November 2017)]; Available online: .
    1. Witkiewicz A.K., McMillan E.A., Balaji U., Baek G., Lin W.C., Mansour J., Mollaee M., Wagner K.U., Koduru P., Yopp A., et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun. 2015;6:6744. doi: 10.1038/ncomms7744.
    1. Chapman P.B., Hauschild A., Robert C., Haanen J.B., Ascierto P., Larkin J., Dummer R., Garbe C., Testori A., Maio M., et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 2011;364:2507–2516. doi: 10.1056/NEJMoa1103782.
    1. Humphris J.L., Patch A.-M., Nones K., Bailey P.J., Johns A.L., McKay S., Chang D.K., Miller D.K., Pajic M., Kassahn K.S., et al. Hypermutation in pancreatic cancer. Gastroenterology. 2017;152:68–74.e62. doi: 10.1053/j.gastro.2016.09.060.
    1. The US Food and Drug Administration News Release FDA Approves First Cancer Treatment for Any Solid Tumor with a Specific Genetic Feature. [(accessed on 30 November 2017)]; Available online: .
    1. Diaz L.A., Marabelle A., Delord J.-P., Shapira-Frommer R., Geva R., Peled N., Kim T.W., Andre T., Cutsem E.V., Guimbaud R., et al. Pembrolizumab therapy for microsatellite instability high (MSI-H) colorectal cancer (CRC) and non-CRC. J. Clin. Oncol. 2017;35:3071.
    1. Cheng D.T., Mitchell T.N., Zehir A., Shah R.H., Benayed R., Syed A., Chandramohan R., Liu Z.Y., Won H.H., Scott S.N., et al. Memorial sloan kettering-integrated mutation profiling of actionable cancer targets (MSK-impact): A hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 2015;17:251–264. doi: 10.1016/j.jmoldx.2014.12.006.
    1. Fox A.J., Hiemenz M.C., Lieberman D.B., Sukhadia S., Li B., Grubb J., Candrea P., Ganapathy K., Zhao J., Roth D., et al. Next generation sequencing for the detection of actionable mutations in solid and liquid tumors. J. Vis. Exp. 2016:52758. doi: 10.3791/52758.
    1. Eifert C., Pantazi A., Sun R., Xu J., Cingolani P., Heyer J., Russell M., Lvova M., Ring J., Tse J.Y., et al. Clinical application of a cancer genomic profiling assay to guide precision medicine decisions. Pers. Med. 2017;14:309–325. doi: 10.2217/pme-2017-0011.
    1. Campbell B.B., Light N., Fabrizio D., Zatzman M., Fuligni F., de Borja R., Davidson S., Edwards M., Elvin J.A., Hodel K.P., et al. Comprehensive analysis of hypermutation in human cancer. Cell. 2017;171:1042–1056. doi: 10.1016/j.cell.2017.09.048.
    1. The Cancer Genome Atlas Network Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–337.
    1. Royal R.E., Levy C., Turner K., Mathur A., Hughes M., Kammula U.S., Sherry R.M., Topalian S.L., Yang J.C., Lowy I., et al. Phase 2 trial of single agent ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J. Immunother. 2010;33:828–833. doi: 10.1097/CJI.0b013e3181eec14c.
    1. Aglietta M., Barone C., Sawyer M.B., Moore M.J., Miller W.H., Jr., Bagala C., Colombi F., Cagnazzo C., Gioeni L., Wang E., et al. A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann. Oncol. 2014;25:1750–1755. doi: 10.1093/annonc/mdu205.
    1. Kunk P.R., Bauer T.W., Slingluff C.L., Rahma O.E. From bench to bedside a comprehensive review of pancreatic cancer immunotherapy. J. Immunother. Cancer. 2016;4:14. doi: 10.1186/s40425-016-0119-z.
    1. A Phase Ib/2, Open-Label, Multicenter, Randomized Umbrella Study Evaluating the Efficacy and Safety of Multiple Immunotherapy-Based Treatment Combinations in Patients with Metastatic Pancreatic Ductal Adenocarcinoma (Morpheus-Pancreatic Cancer) [(accessed on 30 November 2017)]; Available online: .
    1. A Phase 2 Study of Neoadjuvant Chemotherapy with and without Immunotherapy to CA125 (Oregovomab) Followed by Hypofractionated Stereotactic Radiotherapy and Concurrent HIV Protease Inhibitor Nelfinavir in Patients with Locally Advanced Pancreatic Cancer. [(accessed on 30 November 2017)]; Available online: .
    1. A Phase 2 Study of Cabiralizumab (BMS-986227, FPA008) Administered in Combination with Nivolumab (BMS-936558) with and without Chemotherapy in Patients with Advanced Pancreatic Cancer. [(accessed on 30 November 2017)]; Available online: .
    1. A Pilot Study of a GVAX Pancreas Vaccine (with Cyclophosphamide) in Combination with a PD-1 Blockade Antibody (Pembrolizumab) and a Macrophage Targeting Agent (CSF1R Inhibitor) for the Treatment of Patients with Borderline Resectable Adenocarcinoma of the Pancreas. [(accessed on 30 November 2017)]; Available online: .
    1. A Phase Ib Dose-Escalation and Cohort-Expansion Study of the Safety, Tolerability, and Efficacy of a Novel Transforming Growth Factor-β Receptor I Kinase Inhibitor (Galunisertib) Administered in Combination with the Anti-PD-l1 Antibody Durvalumab (MEDI4736) in Recurrent or Refractory Metastatic Pancreatic Cancer. In: Clinicaltrials. [(accessed on 30 November 2017)]; Available online: .
    1. A Phase 2 Study of GM-CSF Secreting Allogeneic Pancreatic Cancer Vaccine in Combination with PD-1 Blockade Antibody (Pembrolizumab) and Stereotactic Body Radiation Therapy (SBRT) for the Treatment of Patients with Locally Advanced Adenocarcinoma of the Pancreas. [(accessed on 30 November 2017)]; Available online: .
    1. A Phase 2 Clinical Trial of GVAX Pancreas Vaccine (with Cyclophosphamide) in Combination with Nivolumab and Stereotactic Body Radiation Therapy (SBRT) Followed by Definitive Resection for Patients with Borderline Resectable Pancreatic Adenocarcinoma. [(accessed on 30 November 2017)]; Available online: .
    1. A Randomized Multicenter Phase Ib/2 Study to Assess the Safety and the Immunological Effect of Chemoradiation Therapy (CRT) in Combination with Pembrolizumab (MK-3475) Compared to CRT Alone in Patients with Resectable or Borderline Resectable Pancreatic Cancer. [(accessed on 30 November 2017)]; Available online: .
    1. Nivolumab and Ipilimumab and Radiation Therapy in Microsatellite Stable (MSS) and Microsatellite Instability (MSI) High Colorectal and Pancreatic Cancer. [(accessed on 30 November 2017)]; Available online: .
    1. A Randomized Phase 2 Study of the Safety, Efficacy, and Immune Response of CRS-207, Nivolumab, and Ipilimumab with or without GVAX Pancreas Vaccine (with Cyclophosphamide) in Patients with Previously Treated Metastatic Pancreatic Adenocarcinoma. [(accessed on 30 November 2017)]; Available online: .
    1. Phase 2 Study of Epacadostat, Pembrolizumab, and CRS-207, with or without Cyclophosphamide and GVAX Pancreas Vaccine in Patients with Metastatic Pancreas Cancer. [(accessed on 30 November 2017)]; Available online: .
    1. Phase 1/2 Study to Evaluate the Safety and Preliminary Efficacy of Nivolumab Combined with Daratumumab in Participants with Advanced or Metastatic Solid Tumors. [(accessed on 30 November 2017)]; Available online: .
    1. A Phase 1 Immunotherapy Study of Evofosfamide in Combination with Ipilimumab in Patients with Advanced Solid Malignancies. [(accessed on 30 November 2017)]; Available online: .
    1. A Phase 1b and 2 Open-Label, Multi-Center Study of MEDI4736 Evaluated in Different Combinations in Patients with Metastatic Pancreatic Ductal Adenocarcinoma. [(accessed on 30 November 2017)]; Available online: .
    1. A Two-Part, Open-Label Phase 1/2 Study to Evaluate Pharmacodynamic Effects and Safety of Olaptesed Pegol Monotherapy and Safety and Efficacy of Olaptesed Pegol/Pembrolizumab Combination Therapy in Metastatic Colorectal and Pancreatic Cancer. [(accessed on 30 November 2017)]; Available online: .
    1. Nant Pancreatic Cancer Vaccine: Combination Immunotherapy with High-Affinity Natural Killer (HANK) in Subjects with Pancreatic Cancer Who Have Progressed on or after Standard-of-Care Therapy. [(accessed on 30 November 2017)]; Available online: .
    1. Immunotherapy and Irreversible Electroporation in the Treatment of Advanced Pancreatic Adenocarcinoma. [(accessed on 30 November 2017)]; Available online: .
    1. Steinhart Z., Pavlovic Z., Chandrashekhar M., Hart T., Wang X., Zhang X., Robitaille M., Brown K.R., Jaksani S., Overmeer R., et al. Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat. Med. 2017;23:60–68. doi: 10.1038/nm.4219.
    1. A Phase I, Open-Label, Dose Escalation Study of Oral LGK974 in Patients with Malignancies Dependent on Wnt Ligands. [(accessed on 30 November 2017)]; Available online: .
    1. Ross J.S., Slodkowska E.A., Symmans W.F., Pusztai L., Ravdin P.M., Hortobagyi G.N. The HER-2 receptor and breast cancer: Ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist. 2009;14:320–368. doi: 10.1634/theoncologist.2008-0230.
    1. Tadesse S., Yu M., Kumarasiri M., Le B.T., Wang S. Targeting CDK6 in cancer: State of the art and new insights. Cell Cycle. 2015;14:3220–3230. doi: 10.1080/15384101.2015.1084445.
    1. Karakas B., Bachman K.E., Park B.H. Mutation of the PIK3CA oncogene in human cancers. Br. J. Cancer. 2006;94:455–459. doi: 10.1038/sj.bjc.6602970.
    1. Lowery M.A., Jordan E.J., Basturk O., Ptashkin R.N., Zehir A., Berger M.F., Leach T., Herbst B., Askan G., Maynard H., et al. Real-time genomic profiling of pancreatic ductal adenocarcinoma: Potential actionability and correlation with clinical phenotype. Clin. Cancer Res. 2017;23:6094–6100. doi: 10.1158/1078-0432.CCR-17-0899.
    1. Johns A.L., McKay S.H., Humphris J.L., Pinese M., Chantrill L.A., Mead R.S., Tucker K., Andrews L., Goodwin A., Leonard C., et al. Lost in translation: Returning germline genetic results in genome-scale cancer research. Genome Med. 2017;9:41. doi: 10.1186/s13073-017-0430-4.
    1. Dreyer S.B., Chang D.K., Bailey P., Biankin A.V. Pancreatic cancer genomes: Implications for clinical management and therapeutic development. Clin. Cancer Res. 2017;23:1638–1646. doi: 10.1158/1078-0432.CCR-16-2411.

Source: PubMed

3
订阅