Functional properties of human auditory cortical fields

David L Woods, Timothy J Herron, Anthony D Cate, E William Yund, G Christopher Stecker, Teemu Rinne, X Kang, David L Woods, Timothy J Herron, Anthony D Cate, E William Yund, G Christopher Stecker, Teemu Rinne, X Kang

Abstract

While auditory cortex in non-human primates has been subdivided into multiple functionally specialized auditory cortical fields (ACFs), the boundaries and functional specialization of human ACFs have not been defined. In the current study, we evaluated whether a widely accepted primate model of auditory cortex could explain regional tuning properties of fMRI activations on the cortical surface to attended and non-attended tones of different frequency, location, and intensity. The limits of auditory cortex were defined by voxels that showed significant activations to non-attended sounds. Three centrally located fields with mirror-symmetric tonotopic organization were identified and assigned to the three core fields of the primate model while surrounding activations were assigned to belt fields following procedures similar to those used in macaque fMRI studies. The functional properties of core, medial belt, and lateral belt field groups were then analyzed. Field groups were distinguished by tonotopic organization, frequency selectivity, intensity sensitivity, contralaterality, binaural enhancement, attentional modulation, and hemispheric asymmetry. In general, core fields showed greater sensitivity to sound properties than did belt fields, while belt fields showed greater attentional modulation than core fields. Significant distinctions in intensity sensitivity and contralaterality were seen between adjacent core fields A1 and R, while multiple differences in tuning properties were evident at boundaries between adjacent core and belt fields. The reliable differences in functional properties between fields and field groups suggest that the basic primate pattern of auditory cortex organization is preserved in humans. A comparison of the sizes of functionally defined ACFs in humans and macaques reveals a significant relative expansion in human lateral belt fields implicated in the processing of speech.

Keywords: attention; cortical mapping; fMRI; primate; sound intensity; sound location; tones; tonotopy.

Figures

Figure 1
Figure 1
Stimuli were delivered in 23.2 s blocks according to a randomized factorial design with all factors in auditory blocks (bimodal and unimodal blocks, the modality attended, tone frequency, tone intensity, and tone location) varying in random order. UV = unimodal visual, BV = bimodal, visual attention, UA = unimodal auditory, BA = bimodal, auditory attention. Each subject received two counterbalanced sequences of 72 blocks during each of six functional imaging sessions performed on separate days, three with continuous image acquisition (TR = 2.9 s) and three with sparse image acquisition (TR = 10.6 s).
Figure 2
Figure 2
Cortical-surface analysis. The cortex from each hemisphere was segmented with FreeSurfer (Fischl et al., 1999), then inflated to a sphere, and aligned to a hemispherically unified coordinate system. The functional and anatomical data were then mapped onto a Mollweide equal-area projection after rotating the sphere so that the intersection of Heschls’ gyrus (HG) and the superior temporal gyrus (STG) lay at the map center with the STG aligned along the equator. Auditory activations during visual attention conditions are shown on the average cortical anatomy of the left hemispheres (gyri are light, sulci are dark). Activations to non-attended tones were largely restricted to the regions of auditory cortex surrounding HG while activations during auditory attention conditions had increased spatial extent. Activations within the rectangular grid were quantified. Color scale: F(1,8) = 4.5–28.0 (red to yellow).
Figure 3
Figure 3
Auditory cortical fields (ACFs). (A) Best-frequency map, showing best frequency at each voxel relative to the two other frequencies. Saturation codes the magnitude of frequency preference (range: 0.07–0.15% difference). Red = 3600 Hz, Green = 900 Hz., Blue = 225 Hz. ACFs (yellow lines) were assigned following the model of Kaas et al. (1999). Auditory core fields were identified by their mirror-symmetric tonotopic organization with surrounding belt fields divided at the boundaries between adjacent core ACFs. White lines indicate gyral boundaries. See text for ACF labels. (B) Model projected on average curvature map of the superior temporal plane (green = gyri, red = sulci), showing anatomical structures and grids used for quantification. CiS: circular sulcus; HG: Heschl's gyrus; HS: Heschl's sulcus; PT: planum temporale; STG: superior temporal gyrus; STS: superior temporal sulcus, LGI: long gyri of the insula.
Figure 4
Figure 4
Mean auditory activation magnitudes (averaged over all auditory conditions and both hemispheres) shown for each voxel in the grid. Color codes activation magnitude: Blue = 0.05–0.15%, Green = 0.15–0.40%, Red: 0.40–0.60%.
Figure 5
Figure 5
Tuning properties of human ACFs. (A) Frequency selectivity: best frequency vs. average of other two frequencies. Color codes bandwidth. Blue = 0.11–0.13, Green = 0.13–0.15, Red: 0.15–0.22. (B) Intensity sensitivity. Blue = 0.01–0.05, Green = 0.05–0.10, Red: 0.10–0.20. (C) Contralaterality. Blue = 0.01–0.05, Green = 0.05–0.10, Red: 0.10–0.20. (D) Binaurality tuning: Blue = 0.01–0.03, Green = 0.03–0.06, Red: 0.06–0.9. (E) Attention: Blue = 0.01–0.06, Green = 0.06–0.012, Red: 0.12–0.20. (F) Hemispheric asymmetry: Blue = 0.01–0.06, Green = 0.06–0.012, Red: 0.12–0.20. Black regions had values below the minimal threshold for each display. AI = anterior insula, PI = posterior insula.
Figure 6
Figure 6
Auditory cortical field functional gradients. Significant differences between adjacent fields are shown for T = tone-frequency selectivity, I = intensity sensitivity, C = contralaterality, B = binaural enhancement, A = attentional modulation, H = right-hemisphere asymmetry.

References

    1. Altmann C. F., Henning M., Doring M. K., Kaiser J. (2008). Effects of feature-selective attention on auditory pattern and location processing. Neuroimage 41, 69–7910.1016/j.neuroimage.2008.02.013
    1. Barrett D. J., Hall D. A. (2006). Response preferences for “what” and “where” in human non-primary auditory cortex. Neuroimage 32, 968–97710.1016/j.neuroimage.2006.03.050
    1. Belin P., Zatorre R. J., Ahad P. (2002). Human temporal-lobe response to vocal sounds. Brain Res. Cogn. Brain Res. 13, 17–2610.1016/S0926-6410(01)00084-2
    1. Belin P., Zatorre R. J., Lafaille P., Ahad P., Pike B. (2000). Voice-selective areas in human auditory cortex. Nature 403, 309–31210.1038/35002078
    1. Bendor D., Wang X. (2006). Cortical representations of pitch in monkeys and humans. Curr. Opin. Neurobiol. 16, 391–39910.1016/j.conb.2006.07.001
    1. Bendor D., Wang X. (2008). Neural response properties of primary, rostral, and rostrotemporal core fields in the auditory cortex of marmoset monkeys. J. Neurophysiol. 100, 888–90610.1152/jn.00884.2007
    1. Bilecen D., Scheffler K., Schmid N., Tschopp K., Seelig J. (1998). Tonotopic organization of the human auditory cortex as detected by BOLD-FMRI. Hear. Res. 126, 19–2710.1016/S0378-5955(98)00139-7
    1. Bilecen D., Seifritz E., Scheffler K., Henning J., Schulte A. C. (2002). Amplitopicity of the human auditory cortex: an fMRI study. Neuroimage 17, 710–71810.1006/nimg.2002.1133
    1. Bitterman Y., Mukamel R., Malach R., Fried I., Nelken I. (2008). Ultra-fine frequency tuning revealed in single neurons of human auditory cortex. Nature 451, 197–20110.1038/nature06476
    1. Brechmann A., Baumgart F., Scheich H. (2002). Sound-level-dependent representation of frequency modulations in human auditory cortex: a low-noise fMRI study. J. Neurophysiol. 87, 423–433
    1. Buffalo E. A., Fries P., Landman R., Liang H., Desimone R. (2010). A backward progression of attentional effects in the ventral stream. Proc. Natl. Acad. Sci. U.S.A. 107, 361–36510.1073/pnas.0907658106
    1. Dale A. M., Fischl B., Sereno M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–19410.1006/nimg.1998.0395
    1. Degerman A., Rinne T., Salmi J., Salonen O., Alho K. (2006). Selective attention to sound location or pitch studied with fMRI. Brain Res. 1077, 123–13410.1016/j.brainres.2006.01.025
    1. Deouell L. Y., Heller A. S., Malach R., D'Esposito M., Knight R. T. (2007). Cerebral responses to change in spatial location of unattended sounds. Neuron 55, 985–99610.1016/j.neuron.2007.08.019
    1. Desai R., Liebenthal E., Possing E. T., Waldron E., Binder J. R. (2005). Volumetric vs. surface-based alignment for localization of auditory cortex activation. Neuroimage 26, 1019–102910.1016/j.neuroimage.2005.03.024
    1. Ekman P. (1992). Are there basic emotions? Psychol. Rev. 99, 550–55310.1037/0033-295X.99.3.550
    1. Fischl B., Sereno M. I., Dale A. M. (1999a). Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–20710.1006/nimg.1998.0396
    1. Fischl B., Sereno M. I., Tootell R. B., Dale A. M. (1999b). High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272–28410.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10=;2-4
    1. Formisano E., Kim D. S., Di Salle F., van de Moortele P. F., Ugurbil K., Goebel R. (2003). Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40, 859–86910.1016/S0896-6273(03)00669-X
    1. Friston K. J., Williams S., Howard R., Frackowiak R. S., Turner R. (1996). Movement-related effects in fMRI time-series. Magn. Reson. Med. 35, 346–355
    1. Galaburda A. M., Sanides F., Geschwind N. (1978). Human brain. Cytoarchitectonic left-right asymmetries in the temporal speech region. Arch Neurol. 35, 812–817
    1. Garcia D., Hall D. A., Plack C. J. (2010). The effect of stimulus context on pitch representations in the human auditory cortex. Neuroimage 51, 806–81610.1016/j.neuroimage.2010.02.079
    1. Hackett T. A. (2010). Information flow in the auditory cortical network. Hear Res. (in press).10.1016/j.heares.2010.01.011
    1. Hackett T. A., Preuss T. M., Kaas J. H. (2001). Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J. Comp. Neurol. 441, 197–22210.1002/cne.1407
    1. Hill J., Inder T., Neil J., Dierker D., Harwell J., Van Essen D. (2010). Similar patterns of cortical expansion during human development and evolution. Proc. Natl. Acad. Sci. U.S.A. 107, 13135–1314010.1073/pnas.1001229107
    1. Hinds O., Polimeni J. R., Rajendran N., Balasubramanian M., Amunts K., Zilles K., Schwartz E. L., Fischl B., Triantafyllou C. (2009). Locating the functional and anatomical boundaries of human primary visual cortex. Neuroimage 46, 915–92210.1016/j.neuroimage.2009.03.036
    1. Hinds O., Polimeni J. R., Rajendran N., Balasubramanian M., Wald L. L., Augustinack J. C., Wiggins G., Rosas H. D., Fischl B., Schwartz E. L. (2008). The intrinsic shape of human and macaque primary visual cortex. Cereb. Cortex 18, 2586–259510.1093/cercor/bhn016
    1. Humphries C., Liebenthal E., Binder J. R. (2010). Tonotopic organization of human auditory cortex. Neuroimage 50, 1202–121110.1016/j.neuroimage.2010.01.046
    1. Hyde K. L., Peretz I., Zatorre R. J. (2008). Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia 46, 632–63910.1016/j.neuropsychologia.2007.09.004
    1. Jancke L., Shah N. J., Posse S., Grosse-Ryuken M., Muller-Gartner H. W. (1998). Intensity coding of auditory stimuli: an fMRI study. Neuropsychologia 36, 875–88310.1016/S0028-3932(98)00019-0
    1. Jancke L., Wustenberg T., Schulze K., Heinze H. J. (2002). Asymmetric hemodynamic responses of the human auditory cortex to monaural and binaural stimulation. Hear. Res. 170, 166–17810.1016/S0378-5955(02)00488-4
    1. Johnsrude I. S., Penhune V. B., Zatorre R. J. (2000). Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain 123, 155–16310.1093/brain/123.1.155
    1. Kaas J. H. (2008). The evolution of the complex sensory and motor systems of the human brain. Brain Res. Bull. 75, 384–39010.1016/j.brainresbull.2007.10.009
    1. Kaas J. H., Hackett T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proc. Natl. Acad. Sci. U.S.A. 97, 11793–1179910.1073/pnas.97.22.11793
    1. Kaas J. H., Hackett T. A., Tramo M. J. (1999). Auditory processing in primate cerebral cortex. Curr. Opin. Neurobiol. 9, 164–17010.1016/S0959-4388(99)80022-1
    1. Kang X., Yund E. W., Herron T. J., Woods D. L. (2007). Improving the resolution of functional brain imaging: analyzing functional data in anatomical space. Magn. Reson. Imaging 25, 1070–107810.1016/j.mri.2006.12.005
    1. Kang X. J., Bertrand O., Alho K., Yund E. W., Herron T. J., Woods D. L. (2004). Local landmark-based mapping of human auditory cortex. Neuroimage 22, 1657–167010.1016/j.neuroimage.2004.04.013
    1. Kayser C., Petkov C. I., Augath M., Logothetis N. K. (2007). Functional imaging reveals visual modulation of specific fields in auditory cortex. J. Neurosci. 27, 1824–183510.1523/JNEUROSCI.4737-06.2007
    1. Krubitzer L. (2007). The magnificent compromise: cortical field evolution in mammals. Neuron 56, 201–20810.1016/j.neuron.2007.10.002
    1. Kusmierek P., Rauschecker J. P. (2009). Functional specialization of medial auditory belt cortex in the alert rhesus monkey. J. Neurophysiol. 102, 1606–162210.1152/jn.00167.2009
    1. Langers D. R., Backes W. H., van Dijk P. (2007a). Representation of lateralization and tonotopy in primary versus secondary human auditory cortex. Neuroimage 34, 264–27310.1016/j.neuroimage.2006.09.002
    1. Langers D. R., van Dijk P., Schoenmaker E. S., Backes W. H. (2007b). fMRI activation in relation to sound intensity and loudness. Neuroimage 35, 709–71810.1016/j.neuroimage.2006.12.013
    1. Lehmann C., Herdener M., Schneider P., Federspiel A., Bach D. R., Esposito F., di Salle F., Scheffler K., Kretz R., Dierks T., Seifritz E. (2007). Dissociated lateralization of transient and sustained blood oxygen level-dependent signal components in human primary auditory cortex. Neuroimage 34, 1637–164210.1016/j.neuroimage.2006.11.011
    1. Middlebrooks J. C., Pettigrew J. D. (1981). Functional classes of neurons in primary auditory cortex of the cat distinguished by sensitivity to sound localization. J. Neurosci. 1, 107–120
    1. Obleser J., Zimmermann J., Van Meter J., Rauschecker J. P. (2007). Multiple stages of auditory speech perception reflected in event-related FMRI. Cereb. Cortex 17, 2251–225710.1093/cercor/bhl133
    1. Orban G. A., Van Essen D., Vanduffel W. (2004). Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn. Sci. 8, 315–32410.1016/j.tics.2004.05.009
    1. Pandya D. N. (1995). Anatomy of the auditory cortex. Rev. Neurol. 151, 486–494
    1. Petit L., Simon G., Joliot M., Andersson F., Bertin T., Zago L., Mellet E., Tzourio-Mazoyer N. (2007). Right hemisphere dominance for auditory attention and its modulation by eye position: an event related fMRI study. Restor. Neurol. Neurosci. 25, 211–225
    1. Petkov C. I., Kang X., Alho K., Bertrand O., Yund E. W., Woods D. L. (2004). Attentional modulation of human auditory cortex. Nat. Neurosci. 7, 658–66310.1038/nn1256
    1. Petkov C. I., Kayser C., Augath M., Logothetis N. K. (2006). Functional imaging reveals numerous fields in the monkey auditory cortex. PLoS Biol. 4, e215.10.1371/journal.pbio.0040215
    1. Petkov C. I., Logothetis N. K., Obleser J. (2009a). Where are the human speech and voice regions, and do other animals have anything like them? Neuroscientist 15, 419–42910.1177/1073858408326430
    1. Petkov C. I., Kayser C., Augath M., Logothetis N. K. (2009b). Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI. Magn. Reson. Imaging 27, 1065–107310.1016/j.mri.2009.01.018
    1. Petkov C. I., Kayser C., Steudel T., Whittingstall K., Augath M., Logothetis N. K. (2008). A voice region in the monkey brain. Nat. Neurosci. 11, 367–37410.1038/nn2043
    1. Rademacher J., Caviness V. S., Jr., Steinmetz H., Galaburda A. M. (1993). Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb. Cortex 3, 313–32910.1093/cercor/3.4.313
    1. Rademacher J., Galaburda A. M., Kennedy D. N., Filipek P. A., Caviness V. S., J. (1992). Human cerebral cortex: Localization, parcellation, and morphometry with magnetic resonance imaging. J. Cogn. Neurosci. 4, 350–37410.1162/jocn.1992.4.4.352
    1. Rauschecker J. P. (1997). Processing of complex sounds in the auditory cortex of cat, monkey, and man. Acta Oto-Laryngol. Suppl. 532, 34–3810.3109/00016489709126142
    1. Rauschecker J. P. (1998). Cortical processing of complex sounds. Curr. Opin. Neurobiol. 8, 516–52110.1016/S0959-4388(98)80040-8
    1. Rauschecker J. P., Tian B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc. Natl. Acad. Sci. U.S.A. 97, 11800–1180610.1073/pnas.97.22.11800
    1. Rauschecker J. P., Tian B. (2004). Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey. J. Neurophysiol. 91, 2578–258910.1152/jn.00834.2003
    1. Rauschecker J. P., Scott S. K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat. Neurosci. 12, 718–72410.1038/nn.2331
    1. Read H. L., Winer J. A., Schreiner C. E. (2002). Functional architecture of auditory cortex. Curr. Opin. Neurobiol. 12, 433–44010.1016/S0959-4388(02)00342-2
    1. Recanzone G. H., Guard D. C., Phan M. L. (2000). Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. J. Neurophysiol. 83, 2315–2331
    1. Recanzone G. H., Sutter M. L. (2008). The biological basis of audition. Annu. Rev. Psychol. 59, 119–14210.1146/annurev.psych.59.103006.093544
    1. Rinne T., Kirjavainen S., Salonen O., Degerman A., Kang X., Woods D. L., Alho K. (2007). Distributed cortical networks for focused auditory attention and distraction. Neurosci. Lett. 416, 247–25110.1016/j.neulet.2007.01.077
    1. Rinne T., Koistinen S., Salonen O., Alho K. (2009). Task-dependent activations of human auditory cortex during pitch discrimination and pitch memory tasks. J. Neurosci. 29, 13338–1334310.1523/JNEUROSCI.3012-09.2009
    1. Sabri M., Binder J. R., Desai R., Medler D. A., Leitl M. D., Liebenthal E. (2008). Attentional and linguistic interactions in speech perception. Neuroimage 39, 1444–145610.1016/j.neuroimage.2007.09.052
    1. Schonwiesner M., Rubsamen R., von Cramon D. Y. (2005). Hemispheric asymmetry for spectral and temporal processing in the human antero-lateral auditory belt cortex. Eur. J. Neurosci. 22, 1521–152810.1111/j.1460-9568.2005.04315.x
    1. Schonwiesner M., von Cramon D. Y., Rubsamen R. (2002). Is it tonotopy after all? Neuroimage 17, 1144–116110.1006/nimg.2002.1250
    1. Schreiner C. E., Winer J. A. (2007). Auditory cortex mapmaking: principles, projections, and plasticity. Neuron 56, 356–36510.1016/j.neuron.2007.10.013
    1. Scott S. K. (2008). Voice processing in monkey and human brains. Trends Cogn. Sci. 12, 323–32510.1016/j.tics.2008.06.003
    1. Seifritz E., Di Salle F., Esposito F., Herdener M., Neuhoff J. G., Scheffler K. (2006). Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence. Neuroimage 29, 1013–102210.1016/j.neuroimage.2005.08.029
    1. Sigalovsky I. S., Fischl B., Melcher J. R. (2006). Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: a possible marker for primary cortex and hemispheric differences. Neuroimage 32, 1524–153710.1016/j.neuroimage.2006.05.023
    1. Sweet R. A., Dorph-Petersen K. A., Lewis D. A. (2005). Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus. J. Comp. Neurol. 491, 270–28910.1002/cne.20702
    1. Talavage T. M., Sereno M. I., Melcher J. R., Ledden P. J., Rosen B. R., Dale A. M. (2004). Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J. Neurophysiol. 91, 1282–129610.1152/jn.01125.2002
    1. Tian B., Reser D., Durham A., Kustov A., Rauschecker J. P. (2001). Functional specialization in rhesus monkey auditory cortex. Science 292, 290–29310.1126/science.1058911
    1. Tootell R. B., Hadjikhani N. K., Vanduffel W., Liu A. K., Mendola J. D., Sereno M. I., Dale A. M. (1998). Functional analysis of primary visual cortex (V1) in humans. Proc. Natl. Acad. Sci. U.S.A. 95, 811–81710.1073/pnas.95.3.811
    1. Viceic D., Campos R., Fornari E., Spierer L., Meuli R., Clarke S., Thiran J. P. (2009). Local landmark-based registration for fMRI group studies of nonprimary auditory cortex. Neuroimage 44, 145–15310.1016/j.neuroimage.2008.07.051
    1. Viceic D., Fornari E., Thiran J. P., Maeder P. P., Meuli R., Adriani M., Clarke S. (2006). Human auditory belt areas specialized in sound recognition: a functional magnetic resonance imaging study. Neuroreport 17, 1659–166210.1097/01.wnr.0000239962.75943.dd
    1. Wandell B. A., Winawer J. (2010). Imaging retinotopic maps in the human brain. Vision Res.(in press).10.1016/j.visres.2010.08.004
    1. Wessinger C. M., VanMeter J., Tian B., Van Lare J., Pekar J., Rauschecker J. P. (2001). Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J. Cogn. Neurosci. 13, 1–710.1162/089892901564108
    1. Winer J. A., Lee C. C. (2007). The distributed auditory cortex. Hear. Res. 229, 3–1310.1016/j.heares.2007.01.017
    1. Woldorff M. G., Tempelmann C., Fell J., Tegeler C., Gaschler-markefski B., Hinrichs H., Heinz H. J., Scheich H. (1999). Lateralized auditory spatial perception and the contralaterality of cortical processing as studied with functional magnetic resonance imaging and magnetoencephalography. Hum. Brain Mapp. 7, 49–6610.1002/(SICI)1097-0193(1999)7:1<49::AID-HBM5=;2-J
    1. Woods D. L., Alain C. (2009). Functional imaging of human auditory cortex. Curr. Opin. Otolaryngol. Head Neck Surg. 17, 407–41110.1097/MOO.0b013e3283303330
    1. Woods D. L., Stecker G. C., Rinne T., Herron T. J., Cate A. D., Yund E. W., Liao I., Kang X. (2009). Functional maps of human auditory cortex: effects of acoustic features and attention. PLoS ONE 4, e5183.10.1371/journal.pone.0005183
    1. Woods T. M., Lopez S. E., Long J. H., Rahman J. E., Recanzone G. H. (2006). Effects of stimulus azimuth and intensity on the single-neuron activity in the auditory cortex of the alert macaque monkey. J. Neurophysiol. 96, 3323–333710.1152/jn.00392.2006
    1. Zeki S. (2004). Thirty years of a very special visual area, Area V5. J. Physiol. 557, 1–210.1113/jphysiol.2004.063040

Source: PubMed

3
订阅