Automated measurement of the human corpus callosum using MRI

Timothy J Herron, Xiaojian Kang, David L Woods, Timothy J Herron, Xiaojian Kang, David L Woods

Abstract

The corpus callosum includes the majority of fibers that connect the two cortical hemispheres. Studies of cross-sectional callosal morphometry and area have revealed developmental, gender, and hemispheric differences in healthy populations and callosal deficits associated with neurodegenerative disease and brain injury. However, accurate quantification of the callosum using magnetic resonance imaging is complicated by intersubject variability in callosal size, shape, and location and often requires manual outlining of the callosum in order to achieve adequate performance. Here we describe an objective, fully automated protocol that utilizes voxel-based images to quantify the area and thickness both of the entire callosum and of different callosal compartments. We verify the method's accuracy, reliability, robustness, and multisite consistency and make comparisons with manual measurements using public brain-image databases. An analysis of age-related changes in the callosum showed increases in length and reductions in thickness and area with age. A comparison of older subjects with and without mild dementia revealed that reductions in anterior callosal area independently predicted poorer cognitive performance after factoring out Mini-Mental Status Examination scores and normalized whole brain volume. Open-source software implementing the algorithm is available at www.nitrc.org/projects/c8c8.

Keywords: Alzheimer's disease; aging; colossal commissure; gender; genu; isthmus; morphometry; splenium.

Figures

Figure 1
Figure 1
Complexities in defining thickness (using dotted line segments) shown on a cartoon posterior callosum. (A) Problem with definition by minimal traversal distance (vertical line is shorter). (B) Line segments defining thickness cannot always be perpendicular to both boundaries simultaneously. (C) Sensitivity of thickness to median anchor point (solid lines) when perpendicularity to the median line is required. (D) High boundary curvature on only one surface causes fans of thickness-defining lines that nearly intersect; complicating attempts to define thickness using uniformly spaced grid lines.
Figure 2
Figure 2
Preprocessing of T1 images. Each T1-weighted MR image (A) was normalized into MNI space (B) and segmented into white matter (C) and gray matter (D). Labels: FX = fornix and PCA = peri-callosal arteries. Arrows indicate incorrectly segmented WM voxels at the callosal boundary in the GM partition.
Figure 3
Figure 3
Quantification of callosal area and thickness. (A) Average callosal structure of 152 young subjects from the OASIS database, averaged in MNI space. Each subject's callosum was subdivided into five compartments along the anterior–posterior axis using geometric ratios following Hofer and Frahm (H&F, top of panel A) (Hofer and Frahm, 2006) and divided into six compartments following Witelson (W, bottom of panel A) (Witelson, 1989). (B) Callosal boundaries were defined with reference to a series of radial lines (three shown) emanating from a centroid. (C) Radial lines intersecting the callosum were oriented vertically. This unwrapped the callosum to define a median line and measure thickness. The same three lines intersecting the callosum in (B) are shown. The light gray line shows the median location of WM probabilities (dark gray) considered vertically. Callosal thickness was computed at each point using the shortest line segment connecting the superior and inferior surfaces through that point (five shown, short thin white).
Figure 4
Figure 4
Mean and standard deviation (error bars) thickness at 50 equal angle spaced locations using automated segmentation (purple solid) and expert-corrected segmentations (gold dashed). The red dotted line indicates the Pearson correlations between the two values at each location.
Figure 5
Figure 5
Scatterplot comparing manually delineated corpus callosum total cross-sectional areas (y-axis) with C8 area estimates (x-axis) for 20 normal subjects in the OASIS database who underwent repeated scans. Diamonds are from image session 1 and asterisks are for session 2. Thin dotted lines connect results for the same subject's two sessions, while the thick dotted line is the area diagonal.
Figure 6
Figure 6
Mean mid-sagittal callosal thicknesses from 14 different scanners (black dotted lines) with young (age means 21–33 years), mixed gender, healthy subjects taken from the FCP database (see Supplemental Table S1). The thick gray line shows the mean and standard deviation.
Figure 7
Figure 7
Scatterplots of Age vs. medial callosal length (A) and Age vs. mean callosal thickness (B) for 1227 FCP database images processed by C8 (cyan/circles) as well as for both automated (purple/crosses) and expert-corrected (gold/triangles) segmentations of 316 OASIS control subjects. Estimated quadratic age regression lines are included.
Figure 8
Figure 8
Spearman correlation values for callosal thicknesses at 16 locations (Ant: anterior, Pos: posterior), regional callosal areas (within 5 H&F partitions: see Figure 3), and callosal length along with estimated GM and WM volumes, age and gender for the 1231 FCP subjects. Square areas are proportional to correlation values, both positive (black) and negative (red), with correlations of 1.0 on the diagonal for scale.

References

    1. Adamson C. L., Wood A. G., Chen J., Barton S., Reutens D. C., Pantelis C., Velakoulis D., Walterfang M. (2011). Thickness profile generation for the corpus callosum using Laplace's equation. Hum. Brain Mapp. 32, 2131–2140 10.1002/hbm.21174
    1. Ardekani S., Kumar A., Bartzokis G., Sinha U. (2007). Exploratory voxel-based analysis of diffusion indices and hemispheric asymmetry in normal aging. Magn. Reson. Imaging 25, 154–167 10.1016/j.mri.2006.09.045
    1. Armstrong C. L., Traipe E., Hunter J. V., Haselgrove J. C., Ledakis G. E., Tallent E. M., Shera D., Van Buchem M. A. (2004). Age-related, regional, hemispheric, and medial-lateral differences in myelin integrity in vivo in the normal adult brain. Am. J. Neuroradiol. 25, 977
    1. Ashburner J., Friston K. (1997). Multimodal image coregistration and partitioning – a unified framework. Neuroimage 6, 209–217 10.1006/nimg.1997.0290
    1. Ashburner J., Friston K. J. (2000). Voxel-based morphometry – the methods. Neuroimage 11, 805–821 10.1006/nimg.2000.0582
    1. Ashburner J., Friston K. J. (2005). Unified segmentation. Neuroimage 26, 839–851 10.1016/j.neuroimage.2005.02.018
    1. Ballmaier M., Kumar A., Elderkin-Thompson V., Narr K. L., Luders E., Thompson P. M., Hojatkashani C., Pham D., Heinz A., Toga A. W. (2008). Mapping callosal morphology in early-and late-onset elderly depression: an index of distinct changes in cortical connectivity. Neuropsychopharmacology 33, 1528–1536 10.1038/sj.npp.1301538
    1. Bearden C. E., Van Erp T. G. M., Dutton R. A., Boyle C., Madsen S., Luders E., Kieseppa T., Tuulio-Henriksson A., Huttunen M., Partonen T. (2011). Mapping corpus callosum morphology in twin Pairs discordant for bipolar disorder. Cereb. Cortex 21, 2415–2424 10.1093/cercor/bhr030
    1. Benedetti B., Charil A., Rovaris M., Judica E., Valsasina P., Sormani M. P., Filippi M. (2006). Influence of aging on brain gray and white matter changes assessed by conventional, MT, and DT MRI. Neurology 66, 535 10.1212/01.wnl.0000198510.73363.c6
    1. Bermudez P., Zatorre R. J. (2001). Sexual dimorphism in the corpus callosum: methodological considerations in MRI morphometry. Neuroimage 13, 1121–1130 10.1006/nimg.2001.0772
    1. Bishop K. M., Wahlsten D. (1997). Sex differences in the human corpus callosum: myth or reality? Neurosci. Biobehav. Rev. 21, 581–601 10.1016/S0149-7634(96)00049-8
    1. Biswal B. B., Mennes M., Zuo X. N., Gohel S., Kelly C., Smith S. M., Beckmann C. F., Adelstein J. S., Buckner R. L., Colcombe S. (2010). Toward discovery science of human brain function. Proc. Natl. Acad. Sci. 107, 4734–4739 10.1073/pnas.0911855107
    1. Bookstein F. L. (2003). Morphometrics for callosal shape studies, in The Parallel Brain: The Cognitive Neuroscience of the Corpus Callosum, ed Iacobini E. Z. A. M. (Cambridge, MA: The MIT Press: ), 75–91
    1. Brejl M., Sonka M. (2000). Object localization and border detection criteria design in edge-based image segmentation: automated learning from examples. IEEE Trans. Med. Imaging 19, 973–985 10.1109/42.887613
    1. Burgel U., Amunts K., Hoemke L., Mohlberg H., Gilsbach J. M., Zilles K. (2006). White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage 29, 1092–1105 10.1016/j.neuroimage.2005.08.040
    1. Chaim T. M., Duran F. L., Uchida R. R., Perico C. A., De Castro C. C., Busatto G. F. (2007). Volumetric reduction of the corpus callosum in Alzheimer's disease in vivo as assessed with voxel-based morphometry. Psychiatry Res. 154, 59–68 10.1016/j.pscychresns.2006.04.003
    1. Clarkson M. J., Cardoso M. J., Ridgway G. R., Modat M., Leung K. K., Rohrer J. D., Fox N. C., Ourselin S. (2011). A comparison of voxel and surface based cortical thickness estimation methods. Neuroimage 57, 856–865 10.1016/j.neuroimage.2011.05.053
    1. Crum W. R., Camara O., Hill D. L. G. (2006). Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans. Med. Imaging 25, 1451–1461 10.1109/TMI.2006.880587
    1. Dale A. M., Fischl B., Sereno M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 10.1006/nimg.1998.0395
    1. De Bresser J., Portegies M. P., Leemans A., Biessels G. J., Kappelle L. J., Viergever M. A. (2011). A comparison of MR based segmentation methods for measuring brain atrophy progression. Neuroimage 54, 760–768 10.1016/j.neuroimage.2010.09.060
    1. Di Paola M., Luders E., Cherubini A., Sanchez-Castaneda C., Thompson P. M., Toga A. W., Caltagirone C., Orobello S., Elifani F., Squitieri F. (2012). Multimodal MRI analysis of the corpus callosum reveals white matter differences in presymptomatic and early Huntington's disease. Cereb. Cortex. [Epub ahead of print]. 10.1093/cercor/bhr360
    1. Di Paola M., Spalletta G., Caltagirone C. (2010). In vivo structural neuroanatomy of corpus callosum in Alzheimer's disease and mild cognitive impairment using different MRI techniques: a review. J. Alzheimers Dis. 20, 67–95 10.3233/JAD-2010-1370
    1. Dorion A. A., Sarazin M., Hasboun D., Hahn-Barma V., Dubois B., Zouaoui A., Marsault C., Duyme M. (2002). Relationship between attentional performance and corpus callosum morphometry in patients with Alzheimer's disease. Neuropsychologia 40, 946–956 10.1016/S0028-3932(01)00150-6
    1. Dougherty R. F., Ben-Shachar M., Deutsch G., Potanina P., Bammer R., Wandell B. A. (2005). Occipital-callosal pathways in children: validation and atlas development. Ann. N.Y. Acad. Sci. 1064, 98–112 10.1196/annals.1340.017
    1. Driesen N. R., Raz N. (1995). The influence of sex, age, and handedness on corpus callosum morphology: a meta-analysis. Psychobiology 23, 240–247
    1. Fischl B., Dale A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. U.S.A. 97, 11050–11055 10.1073/pnas.200033797
    1. Folstein M. F., Folstein S. E., Mchugh P. R. (1975). Mini-mental state examination: a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 10.1016/0022-3956(75)90026-6
    1. Frederiksen K. S., Garde E., Skimminge A., Barkhof F., Scheltens P., Van Straaten E. C. W., Fazekas F., Baezner H., Verdelho A., Ferro J. M. (2011a). Corpus callosum tissue loss and development of motor and global cognitive impairment: the LADIS study. Dement. Geriatr. Cogn. Disord. 32, 279–286 10.1159/000334949
    1. Frederiksen K. S., Garde E., Skimminge A., Ryberg C., Rostrup E., Baaré W., Siebner H., Hejl A. M., Leffers A. M., Waldemar G. (2011b). Corpus callosum atrophy in patients with mild Alzheimer's disease. Neurodegener. Dis. 8, 476–482 10.1159/000327753
    1. Gilliam M., Stockman M., Malek M., Sharp W., Greenstein D., Lalonde F., Clasen L., Giedd J., Rapoport J., Shaw P. (2011). Developmental trajectories of the corpus callosum in attention-deficit/hyperactivity disorder. Biol. Psychiatry 69, 839–846 10.1016/j.biopsych.2010.11.024
    1. Grieve S. M., Korgaonkar M. S., Clark C. R., Williams L. M. (2011). Regional heterogeneity in limbic maturational changes: evidence from integrating cortical thickness, volumetric and diffusion tensor imaging measures. Neuroimage 55, 868–879 10.1016/j.neuroimage.2010.12.087
    1. Gupta T., Singh B., Kapoor K., Gupta M., Kochhar S. (2008). Age and sex related variations in corpus callosal morphology. Nepal Med. Coll. J. 10, 215–221
    1. Gurd J. M., Cowell P. E., Lux S., Rezai R., Cherkas L., Ebers G. C. (2012). fMRI and corpus callosum relationships in monozygotic twins discordant for handedness. Brain Struct. Funct. [Epub ahead of print]. 10.1007/s00429-012-0410-9
    1. Hampel H., Bürger K., Teipel S. J., Bokde A. L. W., Zetterberg H., Blennow K. (2008). Core candidate neurochemical and imaging biomarkers of Alzheimer's disease. Alzheimer's Dement. 4, 38–48 10.1016/j.jalz.2007.08.006
    1. Hampel H., Teipel S. J., Alexander G. E., Horwitz B., Teichberg D., Schapiro M. B., Rapoport S. I. (1998). Corpus callosum atrophy is a possible indicator of region-and cell type-specific neuronal degeneration in Alzheimer disease: a magnetic resonance imaging analysis. Arch. Neurol. 55, 193
    1. Hasan K. M., Ewing Cobbs L., Kramer L. A., Fletcher J. M., Narayana P. A. (2008a). Diffusion tensor quantification of the macrostructure and microstructure of human midsagittal corpus callosum across the lifespan. NMR Biomed. 21, 1094–1101 10.1002/nbm.1286
    1. Hasan K. M., Kamali A., Kramer L. A., Papnicolaou A. C., Fletcher J. M., Ewing-Cobbs L. (2008b). Diffusion tensor quantification of the human midsagittal corpus callosum subdivisions across the lifespan. Brain Res. 1227, 52–67 10.1016/j.brainres.2008.06.030
    1. Hasan K. M., Molfese D. L., Walimuni I. S., Stuebing K. K., Papanicolaou A. C., Narayana P. A., Fletcher J. M. (2012a). Diffusion tensor quantification and cognitive correlates of the macrostructure and microstructure of the corpus callosum in typically developing and dyslexic children. NMR Biomed. [Epub ahead of print]. 10.1002/nbm.2797
    1. Hasan K. M., Walimuni I. S., Abid H., Wolinsky J. S., Narayana P. A. (2012b). Multi-modal quantitative MRI investigation of brain tissue neurodegeneration in multiple sclerosis. J. Magn. Reson. Imaging. 35, 1300–1311 10.1002/jmri.23539
    1. Hofer S., Frahm J. (2006). Topography of the human corpus callosum revisited – comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32, 989–994 10.1016/j.neuroimage.2006.05.044
    1. Horton J. E., Crawford H. J., Harrington G., Downs J. H. (2004). Increased anterior corpus callosum size associated positively with hypnotizability and the ability to control pain. Brain 127, 1741 10.1093/brain/awh196
    1. Huang H., Zhang J., Jiang H., Wakana S., Poetscher L., Miller M. I., Van Zijl P., Hillis A. E., Wytik R., Mori S. (2005). DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum. Neuroimage 26, 195–205 10.1016/j.neuroimage.2005.01.019
    1. Jäncke L., Staiger J. F., Schlaug G., Huang Y., Steinmetz H. (1997). The relationship between corpus callosum size and forebrain volume. Cereb. Cortex 7, 48 10.1093/cercor/7.1.48
    1. Jäncke L., Steinmetz H. (2003). Brain size: a possible source of interindividual variability in corpus callosum morphology, in The Parallel Brain: The Cognitive Neuroscience of the Corpus Callosum, eds Zaidel E., Iacoboni M. (Cambridge, MA: MIT Press; ), 51–63
    1. John J. P., Shakeel M. K., Jain S. (2008). Corpus callosal area differences and gender dimorphism in neuroleptic-naive, recent-onset schizophrenia and healthy control subjects. Schizophr. Res. 103, 11–21 10.1016/j.schres.2008.04.035
    1. Jovicich J., Czanner S., Han X., Salat D., Van Der Kouwe A., Quinn B., Pacheco J., Albert M., Killiany R., Blacker D. (2009). MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage 46, 177–192 10.1016/j.neuroimage.2009.02.010
    1. Klauschen F., Goldman A., Barra V., Meyer Lindenberg A., Lundervold A. (2009). Evaluation of automated brain MR image segmentation and volumetry methods. Hum. Brain Mapp. 30, 1310–1327 10.1002/hbm.20599
    1. Kruggel F. (2006). MRI-based volumetry of head compartments: normative values of healthy adults. Neuroimage 30, 1–11 10.1016/j.neuroimage.2005.09.063
    1. Kubicki M., Styner M., Bouix S., Gerig G., Markant D., Smith K., Kikinis R., Mccarley R. W., Shenton M. E. (2008). Reduced interhemispheric connectivity in schizophrenia-tractography based segmentation of the corpus callosum. Schizophr. Res. 106, 125–131 10.1016/j.schres.2008.08.027
    1. Lee B. Y., Sohn J. H., Choi M. H., Lee S. J., Kim H. S., Yang J. W., Choi J. S., Yi J. H., Tack G. R. (2009). A volumetric study of the corpus callosum in 20s and 40s Korean people. Brain Struct. Funct. 213, 463–467 10.1007/s00429-009-0209-5
    1. Lee C., Huh S., Ketter T. A., Unser M. (2000). Automated segmentation of the corpus callosum in midsagittal brain magnetic resonance images. Opt. Eng. 39, 924
    1. Luders E., Cherbuin N., Thompson P. M., Gutman B., Anstey K. J., Sachdev P., Toga A. W. (2010a). When more is less: associations between corpus callosum size and handedness lateralization. Neuroimage 52, 43–49 10.1016/j.neuroimage.2010.04.016
    1. Luders E., Thompson P. M., Toga A. W. (2010b). The development of the corpus callosum in the healthy human brain. J. Neurosci. 30, 10985 10.1523/JNEUROSCI.5122-09.2010
    1. Luders E., Di Paola M., Tomaiuolo F., Thompson P. M., Toga A. W., Vicari S., Petrides M., Caltagirone C. (2007a). Callosal morphology in Williams syndrome: a new evaluation of shape and thickness. Neuroreport 18, 203 10.1097/WNR.0b013e3280115942
    1. Luders E., Narr K. L., Bilder R. M., Thompson P. M., Szeszko P. R., Hamilton L., Toga A. W. (2007b). Positive correlations between corpus callosum thickness and intelligence. Neuroimage 37, 1457–1464 10.1016/j.neuroimage.2007.06.028
    1. Luders E., Narr K., Zaidel E., Thompson P., Jancke L., Toga A. (2006a). Parasagittal asymmetries of the corpus callosum. Cereb. Cortex 16, 346 10.1093/cercor/bhi112
    1. Luders E., Narr K. L., Thompson P. M., Rex D. E., Woods R. P., Deluca H., Jancke L., Toga A. W. (2006b). Gender effects on cortical thickness and the influence of scaling. Hum. Brain Mapp. 27, 314–324 10.1002/hbm.20187
    1. Luders E., Narr K. L., Hamilton L. S., Phillips O. R., Thompson P. M., Valle J. S., Del'homme M., Strickland T., Mccracken J. T., Toga A. W. (2009). Decreased callosal thickness in attention-deficit/hyperactivity disorder. Biol. Psychiatry 65, 84–88 10.1016/j.biopsych.2008.08.027
    1. Luders E., Rex D. E., Narr K. L., Woods R. P., Jancke L., Thompson P. M., Mazziotta J. C., Toga A. W. (2003). Relationships between sulcal asymmetries and corpus callosum size: gender and handedness effects. Cereb. Cortex 13, 1084 10.1093/cercor/13.10.1084
    1. Maller J. J., Thomson R. H., Lewis P. M., Rose S. E., Pannek K., Fitzgerald P. B. (2010). Traumatic brain injury, major depression, and diffusion tensor imaging: making connections. Brain Res. Rev. 64, 213–240 10.1016/j.brainresrev.2010.04.003
    1. Marcus D. S., Wang T. H., Parker J., Csernansky J. G., Morris J. C., Buckner R. L. (2007). Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19, 1498–1507 10.1162/jocn.2007.19.9.1498
    1. Morris J. C. (1993). The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43, 2412–2414
    1. Niogi S. N., Mukherjee P., Mccandliss B. D. (2007). Diffusion tensor imaging segmentation of white matter structures using a Reproducible Objective Quantification Scheme (ROQS). Neuroimage 35, 166–174 10.1016/j.neuroimage.2006.10.040
    1. Paul L. K. (2011). Developmental malformation of the corpus callosum: a review of typical callosal development and examples of developmental disorders with callosal involvement. J. Neurodev. Disord. 3, 3–27 10.1007/s11689-010-9059-y
    1. Peters M., Oeltze S., Seminowicz D., Steinmetz H., Koeneke S., Jäncke L. (2002). Division of the corpus callosum into subregions. Brain Cogn. 50, 62–72 10.1016/S0278-2626(02)00011-8
    1. Peterson B. S., Feineigle P. A., Staib L. H., Gore J. C. (2001). Automated measurement of latent morphological features in the human corpus callosum. Hum. Brain Mapp. 12, 232–245 10.1002/1097-0193(200104)12:4<232::AID-HBM1018>;2-J
    1. Raine A., Lencz T., Taylor K., Hellige J. B., Bihrle S., Lacasse L., Lee M., Ishikawa S., Colletti P. (2003). Corpus callosum abnormalities in psychopathic antisocial individuals. Arch. Gen. Psychiatry 60, 1134–1142 10.1001/archpsyc.60.11.1134
    1. Rotarska-Jagiela A., Schönmeyer R., Oertel V., Haenschel C., Vogeley K., Linden D. E. J. (2008). The corpus callosum in schizophrenia-volume and connectivity changes affect specific regions. Neuroimage 39, 1522–1532 10.1016/j.neuroimage.2007.10.063
    1. Ryberg C., Rostrup E., Sjastrand K., Paulson O. B., Barkhof F., Scheltens P., Van Straaten E. C. W., Fazekas F., Schmidt R., Erkinjuntti T. (2008). White matter changes contribute to corpus callosum atrophy in the elderly: the LADIS study. Am. J. Neuroradiol. 29, 1498–1504 10.3174/ajnr.A1169
    1. Ryberg C., Rostrup E., Stegmann M. B., Barkhof F., Scheltens P., Van Straaten E. C. W., Fazekas F., Schmidt R., Ferro J. M., Baezner H. (2007). Clinical significance of corpus callosum atrophy in a mixed elderly population. Neurobiol. Aging 28, 955–963 10.1016/j.neurobiolaging.2006.04.008
    1. Salvado O., Bourgeat P., Tamayo O. A., Zuluaga M., Ourselin S. (2007). Fuzzy classification of brain MRI using a priori knowledge: weighted fuzzy C-means, in IEEE International Conference on Computer Vision (Rio de Janeiro, Brazil: IEEE; ).
    1. Sampaio A., Bouix S., Sousa N., Vasconcelos C., Fernandez M., Shenton M. E., Goncalves Ã. F. (2012). Morphometry of corpus callosum in Williams syndrome: shape as an index of neural development. Brain Struct. Funct. [Epub ahead of print]. 10.1007/s00429-012-0423-4
    1. Schönmeyer R., Rotarska-Jagiela A., Prvulovic D., Athelogou M., Haenschel C., Linden D. E. J. (2007). Automatische segmentierung des corpus callosum aus sagittalen Schichten von kernspintomographischen Datensatzen, in Bildverarbeitung Fur Die Medizin, eds Horsch A., Deserno T., Handels H., Meinzer H.-P., Tolxdorff T. (Munich, Berlin and Heidelberg: Springer-Verlag; ), 389–393
    1. Sexton C. E., Kalu U. G., Filippini N., Mackay C. E., Ebmeier K. P. (2011). A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease. Neurobiol. Aging 32, 2322.e5–e18 10.1016/j.neurobiolaging.2010.05.019
    1. Shen D., Davatzikos C. (2003). Very high-resolution morphometry using mass-preserving deformations and HAMMER elastic registration. Neuroimage 18, 28–41 10.1006/nimg.2002.1301
    1. Silver N. C., Barker G. J., Macmanus D. G., Tofts P. S., Miller D. H. (1997). Magnetisation transfer ratio of normal brain white matter: a normative database spanning four decades of life. J. Neurol. Neurosurg. Psychiatry 62, 223
    1. Smith R. J. (2005). Relative size versus controlling for size: interpretation of ratios in research on sexual dimorphism in the human corpus callosum. Curr. Anthropol. 46, 249–273
    1. Stegmann M. B., Davies R. H., Ryberg C. (2004). Corpus callosum analysis using MDL-based sequential models of shape and appearance, in SPIE: International Symposium on Medical Imaging (San Diego, CA: ).
    1. Styner M., Oguz I., Smith R., Cascio C., Jomier M. (2005). Corpus callosum subdivision based on a probabilistic model of inter-hemispheric connectivity. LNCS 3750, 765–772
    1. Suganthy J., Raghuram L., Antonisamy B., Vettivel S., Madhavi C., Koshi R. (2003). Gender and age related differences in the morphology of the corpus callosum. Clin. Anat. 16, 396–403 10.1002/ca.10161
    1. Sullivan E. V., Pfefferbaum A., Adalsteinsson E., Swan G. E., Carmelli D. (2002). Differential rates of regional brain change in callosal and ventricular size: a 4-year longitudinal MRI study of elderly men. Cereb. Cortex 12, 438 10.1093/cercor/12.4.438
    1. Sullivan E. V., Rohlfing T., Pfefferbaum A. (2010). Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: relations to timed performance. Neurobiol. Aging 31, 464–481 10.1016/j.neurobiolaging.2008.04.007
    1. Sun H., Yushkevich P. A., Zhang H., Cook P. A., Duda J. T., Simon T. J., Gee J. C. (2007). Shape-based normalization of the corpus callosum for DTI connectivity analysis. IEEE Trans. Med. Imaging 26, 1166–1178 10.1109/TMI.2007.900322
    1. Sun J., Maller J., Daskalakis Z., Furtado C., Fitzgerald P. (2009). Morphology of the corpus callosum in treatment resistant schizophrenia and major depression. Acta Psychiatr. Scand. 120, 265–273 10.1111/j.1600-0447.2009.01389.x
    1. Takeda S., Hirashima Y., Ikeda H., Yamamoto H., Sugino M., Endo S. (2003). Determination of indices of the corpus callosum associated with normal aging in Japanese individuals. Neuroradiology 45, 513–518 10.1007/s00234-003-1019-8
    1. Tepest R., Jacobi E., Gawronski A., Krug B., Möller-Hartmann W., Lehnhardt F. G., Vogeley K. (2010). Corpus callosum size in adults with high-functioning autism and the relevance of gender. Psychiatry Res. 183, 38–43 10.1016/j.pscychresns.2010.04.007
    1. Thompson P. M., Narr K. L., Blanton R. E., Toga A. W. (2003). Mapping structural alterations of the corpus callosum during brain development and degeneration, in The Parallel Brain: The Cognitive Neuroscience of the Corpus Callosum, eds Zaidel E., Iacobini M. (Cambridge, MA: The MIT Press; ), 93–130
    1. Tomaiuolo F., Scapin M., Di Paola M., Le Nezet P., Fadda L., Musicco M., Caltagirone C., Collins D. (2007). Gross anatomy of the corpus callosum in Alzheimer's disease: regions of degeneration and their neuropsychological correlates. Dement. Geriatr. Cogn. Disord. 23, 96–103 10.1159/000097371
    1. Vachet C., Yvernault B., Bhatt K., Smith R. G., Gerig G., Hazlett H. C., Styner M. (2012). Automatic corpus callosum segmentation using a deformable active Fourier contour model. SPIE 8317, 831707
    1. Van Ginneken B., Frangi A. F., Staal J. J., Ter Haar Romeny B. M., Viergever M. A. (2002). Active shape model segmentation with optimal features. IEEE Trans. Med. Imaging 21, 924–933 10.1109/TMI.2002.803121
    1. Van Leemput K., Maes F., Vandermeulen D., Suetens P. (1999). Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Imaging 18, 897–908 10.1109/42.811270
    1. Walterfang M., Wood A. G., Reutens D. C., Wood S. J., Chen J., Velakoulis D., McGorry P. D., Pantelis C. (2009a). Corpus callosum size and shape in first-episode affective and schizophrenia-spectrum psychosis. Psychiatry Res. 173, 77–82 10.1016/j.pscychresns.2008.09.007
    1. Walterfang M., Yücel M., Barton S., Reutens D. C., Wood A. G., Chen J., Lorenzetti V., Velakoulis D., Pantelis C., Allen N. B. (2009b). Corpus callosum size and shape in individuals with current and past depression. J. Affect. Disord. 115, 411–420 10.1016/j.jad.2008.10.010
    1. Wang D., Shi L., Chu W. C. W., Paus T., Cheng J. C. Y., Heng P. A. (2009). A comparison of morphometric techniques for studying the shape of the corpus callosum in adolescent idiopathic scoliosis. Neuroimage 45, 738–748
    1. Wang P. J., Saykin A. J., Flashman L. A., Wishart H. A., Rabin L. A., Santulli R. B., McHugh T. L., Macdonald J. W., Mamourian A. C. (2006). Regionally specific atrophy of the corpus callosum in AD, MCI and cognitive complaints. Neurobiol. Aging 27, 1613–1617 10.1016/j.neurobiolaging.2005.09.035
    1. Witelson S. F. (1989). Hand and sex differences in the isthmus and genu of the human corpus callosum. Brain 112, 799 10.1093/brain/112.3.799
    1. Xu Q., Chen H., Zhang L., Novak C. L. (2007). Automatic corpus callosum segmentation for standardized MR brain scanning, SPIE Proceedings Vol. 6512 Medical Imaging 2007: Image Processing, eds Pluim Josien P. W., Reinhardt Joseph M. ISBN: 978081946630310.1117/12.710090
    1. Zhu M., Gao W., Wang X., Shi C., Lin Z. (2012). Progression of corpus callosum atrophy in early stage of Alzheimer's disease: MRI based study. Acad. Radiol. 19, 512–517 10.1016/j.acra.2012.01.006

Source: PubMed

3
订阅