HDL functionality in type 1 diabetes: enhancement of cholesterol efflux capacity in relationship with decreased HDL carbamylation after improvement of glycemic control

Damien Denimal, Serge Monier, Isabelle Simoneau, Laurence Duvillard, Bruno Vergès, Benjamin Bouillet, Damien Denimal, Serge Monier, Isabelle Simoneau, Laurence Duvillard, Bruno Vergès, Benjamin Bouillet

Abstract

Background: Reduced cholesterol efflux capacity (CEC) of HDLs is likely to increase cardiovascular risk in type 1 diabetes (T1D). We aimed to assess whether improvement of glycemic control in T1D patients is associated with changes in CEC in relation with changes in carbamylation of HDLs.

Methods: In this open-label trial, 27 uncontrolled T1D patients were given a three-month standard medical intervention to improve glycemic control. HDL fraction was isolated from plasma, and CEC was measured on THP-1 macrophages. Carbamylation of HDLs was evaluated by an immunoassay. Control HDLs from healthy subjects were carbamylated in vitro with potassium cyanate.

Results: HbA1c decreased from 11.4% [10.2-12.9] (median [1st-3rd quartiles]) at baseline to 8.1% [6.6-9.0] after the three-month intervention (P < 0.00001). The CEC of HDLs increased after intervention in 19 (70%) patients (P = 0.038). At the same time, the carbamylation of HDLs decreased in 22 (82%) patients after intervention (P = 0.014). The increase in CEC significantly correlated with the decrease in carbamylated HDLs (r = -0.411, P = 0.034), even after adjustment for the change in HbA1c (β = -0.527, P = 0.003). In vitro carbamylation of control HDLs decreased CEC by 13% (P = 0.041) and 23% (P = 0.021) using 1 and 10 mmol/L of potassium cyanate, respectively.

Conclusions: The improvement of CEC in relation to a decrease in the carbamylation of HDLs may likely contribute to the beneficial cardiovascular effect of glycemic control in T1D patients.

Trial registration: NCT02816099 ClinicalTrials.gov.

Keywords: Carbamylation; Cholesterol efflux; HDL; Type 1 diabetes.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Changes in cholesterol efflux capacity after intervention
Fig. 2
Fig. 2
Changes in carbamylated HDL levels after intervention
Fig. 3
Fig. 3
Correlation between changes in cholesterol efflux capacity and in carbamylated HDL levels after intervention
Fig. 4
Fig. 4
Effect of in vitro HDL carbamylation on cholesterol efflux capacity. Data are presented as means ± SD. Data are obtained from 9 replicates obtained in three independent experiments. KCN: potassium cyanate

References

    1. Lind M, Svensson A-M, Kosiborod M, et al. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2014;371(21):1972–1982. doi: 10.1056/NEJMc1415677.
    1. Nathan D, Cleary P-A, Backlund J-Y, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–2653. doi: 10.1056/NEJMoa052187.
    1. Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Study Research Group Intensive diabetes treatment and cardiovascular outcomes in type 1 diabetes: the DCCT/EDIC study 30-year follow-up. Diabetes Care. 2016;39(5):686–693. doi: 10.2337/dc15-1990.
    1. Vergès B. Lipid disorders in type 1 diabetes. Diabetes Metab. 2009;35(5):353–360. doi: 10.1016/j.diabet.2009.04.004.
    1. Vergès B. Dyslipidemia in type 1 diabetes: a masked danger. Trends Endocrinol Metab. 2020;31(6):422–434. doi: 10.1016/j.tem.2020.01.015.
    1. Marcovecchio ML, Dalton RN, Prevost AT, et al. Prevalence of abnormal lipid profiles and the relationship with the development of microalbuminuria in adolescents with type 1 diabetes. Diabetes Care. 2009;32(4):658–663. doi: 10.2337/dc08-1641.
    1. Guy J, Ogden L, Wadwa RP, et al. Lipid and lipoprotein profiles in youth with and without type 1 diabetes: the SEARCH for diabetes in youth case-control study. Diabetes Care. 2009;32(3):416–420. doi: 10.2337/dc08-1775.
    1. Ganjali S, Dallinga-Thie GM, Simental-Mendia LE, et al. HDL functionality in type 1 diabetes. Atherosclerosis. 2017;267:99–109. doi: 10.1016/j.atherosclerosis.2017.10.018.
    1. Denimal D, Pais de Barros J-P, Petit J-M, Bouillet B, Vergès B, Duvillard L. Significant abnormalities of the HDL phosphosphingolipidome in type 1 diabetes despite normal HDL cholesterol concentration. Atherosclerosis. 2015;241(2):752–760. doi: 10.1016/j.atherosclerosis.2015.06.040.
    1. Bagdade JD, Buchanan WE, Levy RA, Subbaiah PV, Ritter MC. Effects of omega-3 fish oils on plasma lipids, lipoprotein composition, and postheparin lipoprotein lipase in women with IDDM. Diabetes. 1990;39(4):426–431. doi: 10.2337/diab.39.4.426.
    1. Medina-Bravo P. Glycemic control and high-density lipoprotein characteristics in adolescents with type 1 diabetes. Pediatr Diabetes. 2013;14(6):399–406. doi: 10.1111/j.1399-5448.2012.00924.x.
    1. Bagdade JD, Ritter MC, Subbaiah PV. Accelerated cholesteryl ester transfer in patients with insulin-dependent diabetes mellitus. Eur J Clin Invest. 1991;21(2):161–167. doi: 10.1111/j.1365-2362.1991.tb01805.x.
    1. de Vries R, Kerstens MN, Sluiter WJ, Groen AK, van Tol A, Dullaart RPF. Cellular cholesterol efflux to plasma from moderately hypercholesterolaemic type 1 diabetic patients is enhanced, and is unaffected by simvastatin treatment. Diabetologia. 2005;48(6):1105–1113. doi: 10.1007/s00125-005-1760-0.
    1. Heilman K, Zilmer M, Zilmer K, et al. Arterial stiffness, carotid artery intima-media thickness and plasma myeloperoxidase level in children with type 1 diabetes. Diabetes Res Clin Pract. 2009;84(2):168–173. doi: 10.1016/j.diabres.2009.01.014.
    1. Savu O, Serafinceanu C, Grajdeanu IV, et al. Paraoxonase lactonase activity, inflammation and antioxidant status in plasma of patients with type 1 diabetes mellitus. J Int Med Res. 2014;42(2):523–529. doi: 10.1177/0300060513516287.
    1. Iannantuoni F, de Marañon AM, Abad-Jiménez Z, et al. Mitochondrial alterations and enhanced human leukocyte / endothelial cell interactions in type 1 diabetes. J Clin Med. 2020;9(7):2155. doi: 10.3390/jcm9072155.
    1. Wang Z, Nicholls SJ, Rodriguez ER, et al. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat Med. 2007;13(10):1176–1184. doi: 10.1038/nm1637.
    1. Santana JM, Brown CD. High-density lipoprotein carbamylation and dysfunction in vascular disease. Front Biosci. 2018;23(12):2227–2234. doi: 10.2741/4701.
    1. Holzer M, Zangger K, El-Gamal D, et al. Myeloperoxidase-derived chlorinating species induce protein carbamylation through decomposition of thiocyanate and urea: novel pathways generating dysfunctional high-density lipoprotein. Antioxid Redox Signal. 2012;17(8):1043–1052. doi: 10.1089/ars.2011.4403.
    1. Chen Z, Ding S, Wang YP, et al. Association of carbamylated high-density lipoprotein with coronary artery disease in type 2 diabetes mellitus: carbamylated high-density lipoprotein of patients promotes monocyte adhesion. J Transl Med. 2020;18(1):460. doi: 10.1186/s12967-020-02623-2.
    1. Sun JT, Yang K, Lu L, et al. Increased carbamylation level of HDL in end-stage renal disease: carbamylated-HDL attenuated endothelial cell function. Am J Physiol Renal Physiol. 2016;310(6):F511–517. doi: 10.1152/ajprenal.00508.2015.
    1. Lui DTW, Cheung C, Lee ACH, et al. Carbamylated HDL and mortality outcomes in type 2 diabetes. Diabetes Care. 2021;44(3):804–809. doi: 10.2337/dc20-2186.
    1. Gourgari E, Playford MP, Campia U, et al. Low cholesterol efflux capacity and abnormal lipoprotein particles in youth with type 1 diabetes : a case control study. Cardiovasc Diabetol. 2018;17(1):158. doi: 10.1186/s12933-018-0802-0.
    1. Manjunatha S, Distelmaier K, Dasari S, Carter RE, Kudva YC, Nair KS. Functional and proteomic alterations of plasma high density lipoproteins in type 1 diabetes mellitus. Metabolism. 2016;65(9):1421–1431. doi: 10.1016/j.metabol.2016.06.008.
    1. Ahmed MO, Byrne RE, Pazderska A, et al. HDL particle size is increased and HDL-cholesterol efflux is enhanced in type 1 diabetes : a cross-sectional study. Diabetologia. 2021;64(3):656–667. doi: 10.1007/s00125-020-05320-3.
    1. Denimal D, Monier S, Brindisi M-C, et al. Impairment of the ability of HDL from patients with metabolic syndrome but without diabetes mellitus to activate eNOS: correction by S1P enrichment. Arterioscler Thromb Vasc Biol. 2017;37(5):804–811. doi: 10.1161/atvbaha.117.309287.
    1. Holzer M, Gauster M, Pfeifer T, et al. Protein carbamylation renders high-density lipoprotein dysfunctional. Antioxid Redox Signal. 2011;14(12):2337–2346. doi: 10.1089/ars.2010.3640.
    1. Qiu C, Zhao X, Zhou Q, Zhang Z. High-density lipoprotein cholesterol efflux capacity is inversely associated with cardiovascular risk: a systematic review and meta-analysis. Lipids Health Dis. 2017;16(1):212. doi: 10.1186/s12944-017-0604-5.
    1. Ebtehaj S, Gruppen EG, Bakker SJL, Dullaart RPF, Tietge UJF. HDL (high-density lipoprotein) cholesterol efflux capacity is associated with incident cardiovascular disease in the general population. Arterioscler Thromb Vasc Biol. 2019;39(9):1874–1883. doi: 10.1161/atvbaha.119.312645.
    1. Bortnick AE, Rothblat GH, Stoudt G, et al. The correlation of ATP-binding cassette 1 mRNA levels with cholesterol efflux from various cell lines. J Biol Chem. 2000;275(37):28634–28640. doi: 10.1074/jbc.m003407200.
    1. Zhao Y, Sparks DL, Marcel YL. Effect of the apolipoprotein A-I and surface lipid composition of reconstituted discoidal HDL on cholesterol efflux from cultured fibroblasts. Biochemistry. 1996;35(51):16510–16518. doi: 10.1021/bi961622t.
    1. Johnson WJ, Bamberger MJ, Latta RA, Rapp PE, Phillips MC, Rothblat GH. The bidirectional flux of cholesterol between cells and lipoproteins. Effects of phospholipid depletion of high density lipoprotein. J Biol Chem. 1986;261(13):5766–5776. doi: 10.1016/S0021-9258(17)38448-X.
    1. Yancey PG, Kawashiri M, Moore R, et al. In vivo modulation of HDL phospholipid has opposing effects on SR-BI- and ABCA1-mediated cholesterol efflux. J Lipid Res. 2004;45(2):337–346. doi: 10.1194/jlr.m300231-jlr200.
    1. Melchior JT, Street SE, Andraski AB, et al. Apolipoprotein A-II alters the proteome of human lipoproteins and enhances cholesterol efflux from ABCA1. J Lipid Res. 2017;58:1374–1385. doi: 10.1194/jlr.M075382.
    1. Wang Y, Niimi M, Nishijima K, et al. Human apolipoprotein A-II protects against diet-induced atherosclerosis in transgenic rabbits. Arterioscler Thromb Vasc Biol. 2013;33(2):224–231. doi: 10.1161/ATVBAHA.112.300445.
    1. Curtiss LK, Bonnet DJ, Rye KA. The conformation of apolipoprotein A-I in high-density lipoproteins is influenced by core lipid composition and particle size: a surface plasmon resonance study. Biochemistry. 2000;39:5712–5721. doi: 10.1021/bi992902m.
    1. Kontush A, de Faria EC, Chantepie S, Chapman MJ. A normotriglyceridemic, low HDL-cholesterol phenotype is characterised by elevated oxidative stress and HDL particles with attenuated antioxidative activity. Atherosclerosis. 2005;182(2):277–285. doi: 10.1016/j.atherosclerosis.2005.03.001.
    1. Matsuki K, Tamasawa N, Yamashita M, et al. Metformin restores impaired HDL-mediated cholesterol efflux due to glycation. Atherosclerosis. 2009;206:434–438. doi: 10.1016/j.atherosclerosis.2009.03.003.
    1. Rashduni DL, Rifici VA, Schneider SH, Khachadurian AK. Glycation of high-density lipoprotein does not increase its susceptibility to oxidation or diminish its cholesterol efflux capacity. Metabolism. 1999;48(2):139–143. doi: 10.1016/S0026-0495(99)90024-0.
    1. Kashyap SR, Osme A, Ilchenko S, et al. Glycation reduces the stability of ApoAI and increases HDL dysfunction in diet-controlled type 2 diabetes. J Clin Endocrinol Metab. 2018;103(2):388–396. doi: 10.1210/jc.2017-01551.
    1. Roberts JM, Veres PR, Cochran AK, et al. Isocyanic acid in the atmosphere and its possible link to smoke-related health effects. Proc Natl Acad Sci. 2011;108(22):8966–8971. doi: 10.1073/pnas.1103352108.
    1. Husgafvel-Pursiainen K, Sorsa M, Engström K, Einistö P. Passive smoking at work: biochemical and biological measures of exposure to environmental tobacco smoke. Int Arch Occup Environ Health. 1987;59(4):337–345. doi: 10.1007/bf00405277.

Source: PubMed

3
订阅