Development and validation of a risk score for chronic kidney disease in HIV infection using prospective cohort data from the D:A:D study

Amanda Mocroft, Jens D Lundgren, Michael Ross, Matthew Law, Peter Reiss, Ole Kirk, Colette Smith, Deborah Wentworth, Jacqueline Neuhaus, Christoph A Fux, Olivier Moranne, Phillipe Morlat, Margaret A Johnson, Lene Ryom, D:A:D study group, Royal Free Hospital Clinic Cohort, INSIGHT study group, SMART study group, ESPRIT study group

Abstract

Background: Chronic kidney disease (CKD) is a major health issue for HIV-positive individuals, associated with increased morbidity and mortality. Development and implementation of a risk score model for CKD would allow comparison of the risks and benefits of adding potentially nephrotoxic antiretrovirals to a treatment regimen and would identify those at greatest risk of CKD. The aims of this study were to develop a simple, externally validated, and widely applicable long-term risk score model for CKD in HIV-positive individuals that can guide decision making in clinical practice.

Methods and findings: A total of 17,954 HIV-positive individuals from the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study with ≥3 estimated glomerular filtration rate (eGFR) values after 1 January 2004 were included. Baseline was defined as the first eGFR > 60 ml/min/1.73 m2 after 1 January 2004; individuals with exposure to tenofovir, atazanavir, atazanavir/ritonavir, lopinavir/ritonavir, other boosted protease inhibitors before baseline were excluded. CKD was defined as confirmed (>3 mo apart) eGFR ≤ 60 ml/min/1.73 m2. Poisson regression was used to develop a risk score, externally validated on two independent cohorts. In the D:A:D study, 641 individuals developed CKD during 103,185 person-years of follow-up (PYFU; incidence 6.2/1,000 PYFU, 95% CI 5.7-6.7; median follow-up 6.1 y, range 0.3-9.1 y). Older age, intravenous drug use, hepatitis C coinfection, lower baseline eGFR, female gender, lower CD4 count nadir, hypertension, diabetes, and cardiovascular disease (CVD) predicted CKD. The adjusted incidence rate ratios of these nine categorical variables were scaled and summed to create the risk score. The median risk score at baseline was -2 (interquartile range -4 to 2). There was a 1:393 chance of developing CKD in the next 5 y in the low risk group (risk score < 0, 33 events), rising to 1:47 and 1:6 in the medium (risk score 0-4, 103 events) and high risk groups (risk score ≥ 5, 505 events), respectively. Number needed to harm (NNTH) at 5 y when starting unboosted atazanavir or lopinavir/ritonavir among those with a low risk score was 1,702 (95% CI 1,166-3,367); NNTH was 202 (95% CI 159-278) and 21 (95% CI 19-23), respectively, for those with a medium and high risk score. NNTH was 739 (95% CI 506-1462), 88 (95% CI 69-121), and 9 (95% CI 8-10) for those with a low, medium, and high risk score, respectively, starting tenofovir, atazanavir/ritonavir, or another boosted protease inhibitor. The Royal Free Hospital Clinic Cohort included 2,548 individuals, of whom 94 individuals developed CKD (3.7%) during 18,376 PYFU (median follow-up 7.4 y, range 0.3-12.7 y). Of 2,013 individuals included from the SMART/ESPRIT control arms, 32 individuals developed CKD (1.6%) during 8,452 PYFU (median follow-up 4.1 y, range 0.6-8.1 y). External validation showed that the risk score predicted well in these cohorts. Limitations of this study included limited data on race and no information on proteinuria.

Conclusions: Both traditional and HIV-related risk factors were predictive of CKD. These factors were used to develop a risk score for CKD in HIV infection, externally validated, that has direct clinical relevance for patients and clinicians to weigh the benefits of certain antiretrovirals against the risk of CKD and to identify those at greatest risk of CKD.

Conflict of interest statement

PM: honoraria or travel/meeting expenses from Bristol-Myers Squibb, Gilead, Janssen-Cilag, Merck Sharp & Dohme-Chibret and ViiV Healthcare in the past five years. ML received unrestricted grants to my institution from Boehringer Ingelhiem, Gilead Sciences, Merck Sharp & Dohme, Bristol-Myers Squibb, Janssen-Cilag, ViiV HealthCare. CS has received funds for preparation of Educational Materials from Janssen, Gilead, BMS, ViiV HealthCare, support for attendance at Ad board and support to attend HIV conference from Gilead, funding to conduct study from BMS. OM has received honoraria as a speaker from Abbott and Gilead Sciences, serves on the board of Roche, and had expenses paid by Roche and Baxter for travel, accommodations, and meetings. OK has received honoraria, consultancy, lecture fees, and travel grants from Abbott Laboratories, Bristol-Myers Squibb, Gilead Sciences, Janssen, Merck Sharp & Dohme, Roche, and ViiV Healthcare, and has served/is serving on Advisory Boards for Gilead Sciences, Merck Sharp & Dohme, and ViiV Healthcare. AM has received honoraria, consultancy, lecture fees, and travel grants from Gilead Sciences, Merck Sharp & Dohme, Boehringer Ingelheim, Pfizer and GSK.

Figures

Fig 1. Kaplan Meier progression to chronic…
Fig 1. Kaplan Meier progression to chronic kidney disease with low, medium, and high risk scores.
(A) D:A:D study: derivation cohort. (B) Royal Free Hospital Clinic Cohort: validation cohort. (C) SMART/ESPRIT control arms: validation cohort.
Fig 2. Number needed to harm among…
Fig 2. Number needed to harm among those at low (risk score
ATV, atazanavir; ATV/r, atazanavir/ritonavir; BPI, other ritonavir-boosted protease inhibitor (excluding lopinavir/ritonavir and atazanavir/ritonavir); LPV/r, lopinavir/ritonavir; TDF, tenofovir.

References

    1. May M, Gompels M, Delpech V, Porter K, Post F, et al. (2011) Impact of late diagnosis and treatment on life expectancy in people with HIV-1: UK Collaborative HIV Cohort (UK CHIC) Study. BMJ 343: d6016 10.1136/bmj.d6016
    1. van Sighem AI, Gras LA, Reiss P, Brinkman K, de Wolf F, et al. (2010) Life expectancy of recently diagnosed asymptomatic HIV-infected patients approaches that of uninfected individuals. AIDS 24: 1527–1535. 10.1097/QAD.0b013e32833a3946
    1. Mocroft A, Vella S, Benfield TL, Chiesi A, Miller V, et al. (1998) Changing patterns of mortality across Europe in patients infected with HIV-1. EuroSIDA Study Group. Lancet 352: 1725–1730.
    1. Jotwani V, Li Y, Grunfeld C, Choi AI, Shlipak MG (2012) Risk factors for ESRD in HIV-infected individuals: traditional and HIV-related factors. Am J Kidney Dis 59: 628–635. 10.1053/j.ajkd.2011.10.050
    1. McAlister FA, Ezekowitz J, Tonelli M, Armstrong PW (2004) Renal insufficiency and heart failure: prognostic and therapeutic implications from a prospective cohort study. Circulation 109: 1004–1009.
    1. Gupta SK, Mamlin BW, Johnson CS, Dollins MD, Topf JM, et al. (2004) Prevalence of proteinuria and the development of chronic kidney disease in HIV-infected patients. Clin Nephrol 61: 1–6.
    1. Szczech LA, Gange SJ, van der HC, Bartlett JA, Young M, et al. (2002) Predictors of proteinuria and renal failure among women with HIV infection. Kidney Int 61: 195–202.
    1. Lucas GM, Lau B, Atta MG, Fine DM, Keruly J, et al. (2008) Chronic kidney disease incidence, and progression to end-stage renal disease, in HIV-infected individuals: a tale of two races. J Infect Dis 197: 1548–1557. 10.1086/587994
    1. Mocroft A, Kirk O, Reiss P, de Wit S, Sedlacek D, et al. (2010) Estimated glomerular filtration rate, chronic kidney disease and antiretroviral drug use in HIV-positive patients. AIDS 24: 1667–1678. 10.1097/QAD.0b013e328339fe53
    1. Flandre P, Pugliese P, Cuzin L, Bagnis CI, Tack I, et al. (2011) Risk factors of chronic kidney disease in HIV-infected patients. Clin J Am Soc Nephrol 6: 1700–1707. 10.2215/CJN.09191010
    1. Ryom L, Mocroft A, Kirk O, Worm SW, Kamara DA, et al. (2013) Association between antiretroviral exposure and renal impairment among HIV-positive persons with normal baseline renal function: the D:A:D Study. J Infect Dis 207: 1359–1369. 10.1093/infdis/jit043
    1. Scherzer R, Estrella M, Li Y, Choi AI, Deeks SG, et al. (2012) Association of tenofovir exposure with kidney disease risk in HIV infection. AIDS 26: 867–875. 10.1097/QAD.0b013e328351f68f
    1. Ibrahim F, Hamzah L, Jones R, Nitsch D, Sabin C, et al. (2011) Baseline renal function as predictor of mortality and renal disease progression in HIV infected patients [abstract]. Abstract 836. 18th Conference on Retroviruses and Opportunistic Infections; 27 Feb–2 Mar 2011; Boston, Massachusetts, US.
    1. Lee M, Saver JL, Chang KH, Liao HW, Chang SC, et al. (2010) Low glomerular filtration rate and risk of stroke: meta-analysis. BMJ 341: c4249 10.1136/bmj.c4249
    1. Mocroft A, Ryom L, Begovac J, Monforte AD, Vassilenko A, et al. (2014) Deteriorating renal function and clinical outcomes in HIV-positive persons. AIDS 28: 727–737. 10.1097/QAD.0000000000000134
    1. Thakkinstian A, Ingsathit A, Chaiprasert A, Rattanasiri S, Sangthawan P, et al. (2011) A simplified clinical prediction score of chronic kidney disease: a cross-sectional-survey study. BMC Nephrol 12: 45 10.1186/1471-2369-12-45
    1. Chien KL, Lin HJ, Lee BC, Hsu HC, Lee YT, et al. (2010) A prediction model for the risk of incident chronic kidney disease. Am J Med 123: 836–846. 10.1016/j.amjmed.2010.05.010
    1. Ando M, Yanagisawa N, Ajisawa A, Tsuchiya K, Nitta K (2011) A simple model for predicting incidence of chronic kidney disease in HIV-infected patients. Clin Exp Nephrol 15: 242–247. 10.1007/s10157-010-0393-x
    1. Scherzer R, Gandhi M, Estrella MM, Tien PC, Deeks SG, et al. (2014) A chronic kidney disease risk score to determine tenofovir safety in a prospective cohort of HIV-positive male veterans. AIDS 28: 1289–1295. 10.1097/QAD.0000000000000258
    1. Collins GS, Omar O, Shanyinde M, Yu LM (2013) A systematic review finds prediction models for chronic kidney disease were poorly reported and often developed using inappropriate methods. J Clin Epidemiol 66: 268–277. 10.1016/j.jclinepi.2012.06.020
    1. Friis-Moller N, Weber R, Reiss P, Thiebaut R, Kirk O, et al. (2003) Cardiovascular disease risk factors in HIV patients—association with antiretroviral therapy. Results from the DAD study. AIDS 17: 1179–1193.
    1. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16: 31–41.
    1. Gupta SK, Eustace JA, Winston JA, Boydstun II, Ahuja TS, et al. (2005) Guidelines for the management of chronic kidney disease in HIV-infected patients: recommendations of the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis 40: 1559–1585.
    1. Ryom L, Mocroft A, Lundgren JD (2014) Antiretroviral therapy, immune suppression and renal impairment in HIV-positive persons. Curr Opin HIV AIDS 9: 41–47. 10.1097/COH.0000000000000023
    1. ) Manual of operations: MOOP—Data Collection on Adverse Events of Anti-HIV Drugs, version 1.4. Available: . Accessed 5 March 2015.
    1. Sabin CA, Smith CJ, Youle M, Lampe FC, Bell DR, et al. (2006) Deaths in the era of HAART: contribution of late presentation, treatment exposure, resistance and abnormal laboratory markers. AIDS 20: 67–71.
    1. Abrams D, Levy Y, Losso MH, Babiker A, Collins G, et al. (2009) Interleukin-2 therapy in patients with HIV infection. N Engl J Med 361: 1548–1559. 10.1056/NEJMoa0903175
    1. El-Sadr WM, Lundgren JD, Neaton JD, Gordin F, Abrams D, et al. (2006) CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med 355: 2283–2296.
    1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, et al. (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150: 604–612.
    1. Ryom L, Mocroft A, Kirk O, Ross M, Reiss P, et al. (2014) Predictors of advanced chronic kidney disease and end-stage renal disease in HIV-positive persons. AIDS 28: 187–199. 10.1097/QAD.0000000000000042
    1. de Boer IH (2012) Chronic kidney disease—a challenge for all ages. JAMA 308: 2401–2402.
    1. Stohr W, Reid A, Walker AS, Ssali F, Munderi P, et al. (2011) Glomerular dysfunction and associated risk factors over 4–5 years following antiretroviral therapy initiation in Africa. Antivir Ther 16: 1011–1020. 10.3851/IMP1832
    1. Mocroft A, Ryom L, Reiss P, Furrer H, d’Arminio MA, et al. (2014) A comparison of estimated glomerular filtration rates using Cockcroft-Gault and the Chronic Kidney Disease Epidemiology Collaboration estimating equations in HIV infection. HIV Med 15: 144–152. 10.1111/hiv.12095
    1. World Health Organization (2013) Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection Recommendations for a public health approach. Geneva: World Health Organization.

Source: PubMed

3
订阅