Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota

Christophe Audebert, Gaël Even, Amandine Cian, Blastocystis Investigation Group, Alexandre Loywick, Sophie Merlin, Eric Viscogliosi, Magali Chabé, Dima El Safadi, Gabriela Certad, Laurence Delhaes, Bruno Pereira, Céline Nourrisson, Philippe Poirier, Ivan Wawrzyniak, Frédéric Delbac, Christelle Morelle, Patrick Bastien, Laurence Lachaud, Anne-Pauline Bellanger, Françoise Botterel, Ermanno Candolfi, Guillaume Desoubeaux, Florent Morio, Christelle Pomares, Meja Rabodonirina, Christophe Audebert, Gaël Even, Amandine Cian, Blastocystis Investigation Group, Alexandre Loywick, Sophie Merlin, Eric Viscogliosi, Magali Chabé, Dima El Safadi, Gabriela Certad, Laurence Delhaes, Bruno Pereira, Céline Nourrisson, Philippe Poirier, Ivan Wawrzyniak, Frédéric Delbac, Christelle Morelle, Patrick Bastien, Laurence Lachaud, Anne-Pauline Bellanger, Françoise Botterel, Ermanno Candolfi, Guillaume Desoubeaux, Florent Morio, Christelle Pomares, Meja Rabodonirina

Abstract

Alterations in the composition of commensal bacterial populations, a phenomenon known as dysbiosis, are linked to multiple gastrointestinal disorders, such as inflammatory bowel disease and irritable bowel syndrome, or to infections by diverse enteric pathogens. Blastocystis is one of the most common single-celled eukaryotes detected in human faecal samples. However, the clinical significance of this widespread colonization remains unclear, and its pathogenic potential is controversial. To address the issue of Blastocystis pathogenicity, we investigated the impact of colonization by this protist on the composition of the human gut microbiota. For that purpose, we conducted a cross-sectional study including 48 Blastocystis-colonized patients and 48 Blastocystis-free subjects and performed an Ion Torrent 16S rDNA gene sequencing to decipher the Blastocystis-associated gut microbiota. Here, we report a higher bacterial diversity in faecal microbiota of Blastocystis colonized patients, a higher abundance of Clostridia as well as a lower abundance of Enterobacteriaceae. Our results contribute to suggesting that Blastocystis colonization is usually associated with a healthy gut microbiota, rather than with gut dysbiosis generally observed in metabolic or infectious inflammatory diseases of the lower gastrointestinal tract.

Figures

Figure 1. Rarefaction curve calculated for Chao1…
Figure 1. Rarefaction curve calculated for Chao1 index demonstrating the higher bacterial diversity found among Blastocystis-colonized patients.
The blue line indicates Blastocystis-colonized patients and the red line indicates Blastocystis-free individuals.
Figure 2. Boxplots of observed OTUs richness…
Figure 2. Boxplots of observed OTUs richness and Shannon diversity indexes distinguishing between patients colonized or not by Blastocystis.
Statistical analyses were performed using the Mann-Whitney-Wilcoxon (MWW) test. Plotted are interquartile ranges (IQRs; boxes), medians (dark lines in the boxes), and the lowest and highest values within 1.5 times IQR from the first and third quartiles (whiskers above and below the boxes). Both alpha-diversity metrics were calculated using 273 normalized sequences per sample.
Figure 3. PCoA of the microbial communities…
Figure 3. PCoA of the microbial communities in Blastocystis-colonized and Blastocystis-free patient samples.
The blue dots indicate Blastocystis-colonized patients and the red dots indicate Blastocystis-negative individuals.
Figure 4. Analyses of the bacterial microbiota…
Figure 4. Analyses of the bacterial microbiota composition at the order-level taxonomic rank.
(A) PCA plot comparing the four patient groups according to their microbiota patterns for the 5 most abundant microbial communities at the order-level taxonomic rank. Groups 3 and 4 define the Blastocystis-free cluster (in blue); groups 1 and 2 define the Blastocystis-positive cluster (in orange). (B) Proportion of sequences assigned to each main group at the order-level taxonomic rank (level 4) for Clostridiales and Lactobacillales illustrated using STAMP, along with means for each group and the significance of the difference in mean proportions using White’s nonparametric t-test with Benjamini-Hochberg FDR multiple test correction. The blue and orange bars represent Blastocystis-free patients and Blastocystis-positive patients, respectively.
Figure 5. Proportion of sequences assigned to…
Figure 5. Proportion of sequences assigned to each main group at the family taxonomic rank (level 5), along with the means for each group and significance of difference in mean proportions using White’s nonparametric t-test with Benjamini-Hochberg FDR multiple test correction, illustrated using STAMP.
Significant differences (q-value Blastocystis-free patients and Blastocystis-colonized patients, respectively.
Figure 6. Relative abundances of OTUs of…
Figure 6. Relative abundances of OTUs of Faecalibacterium and Roseburia genera that differ significantly between Blastocystis-colonized and Blastocystis-free patients.
The Mann-Whitney-Wilcoxon test was used to evaluate the two groups.

References

    1. Tan K. S. New insights on classification, identification, and clinical relevance of Blastocystis spp. Clin. Microbiol. Rev. 21, 639–665 (2008).
    1. Clark C. G., van der Giezen M., Alfellani M. A. & Stensvold C. R. Recent developments in Blastocystis research. Adv. Parasitol. 82, 1–32 (2013).
    1. Bart A. et al. Diagnosis and subtype analysis of Blastocystis sp. in 442 patients in a hospital setting in the Netherlands. BMC Infect. Dis. 13, 389 (2013).
    1. Wawrzyniak I. et al. Blastocystis, an unrecognized parasite: an overview of pathogenesis and diagnosis. Ther. Adv. Infect. Dis. 1, 167–178 (2013).
    1. El Safadi D. et al. Children of Senegal River Basin show the highest prevalence of Blastocystis sp. ever observed worldwide. BMC Infect. Dis. 14, 164 (2014).
    1. Boorom K. F. et al. Oh my aching gut: irritable bowel syndrome, Blastocystis, and asymptomatic infection. Parasit. Vectors 1, 40 (2008).
    1. Tan K. S. W., Mirza H., Teo J. D. W., Wu B. & MacAry P. A. Current views on the clinical relevance of Blastocystis spp. Curr. Infect. Dis. Rep. 12, 28–35 (2010).
    1. Poirier P., Wawrzyniak I., Vivarès C. P., Delbac F. & El Alaoui H. New insights into Blastocystis spp.: A potential link with irritable bowel syndrome. PLos Pathog. 8, e1002545 (2012).
    1. Scanlan P. D. Blastocystis: Past pitfalls and future perspectives. Trends Parasitol. 28, 327–334 (2012).
    1. Denoeud F. et al. Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite. Genome Biol. 12, R29 (2011).
    1. Wawrzyniak I. et al. Characterization of two cysteine proteases secreted by Blastocystis ST7, a human intestinal parasite. Parasitol. Int. 61, 437–442 (2012).
    1. Wawrzyniak I. et al. Draft genome sequence of the intestinal parasite Blastocystis subtype 4-isolate WR1. Genom. Data 4, 22–23 (2015).
    1. Lim M. X. et al. Differential regulation of proinflammatory cytokine expression by mitogen-activated protein kinases in macrophages in response to intestinal parasite infection. Infect. Immun. 82, 4789–4801 (2014).
    1. Wu Z., Mirza H. & Tan K. S. W. Intra-subtype variation in enteroadhesion accounts for differences in epithelial barrier disruption and is associated with metronidazole resistance in Blastocystis subtype-7. PLos Negl. Trop. Dis. 8, 27–31 (2014).
    1. Wu Z., Mirza H., Teo J. D. W. & Tan K. S. W. Strain-dependent induction of human enterocyte apoptosis by Blastocystis disrupts epithelial barrier and ZO-1 organization in a caspase 3- and 9-dependent manner. Biomed Res. Int. 2014, 209163 (2014).
    1. Scanlan P. D. & Marchesi J. R. Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. ISME J. 2, 1183–1193 (2008).
    1. Scanlan P. D. et al. The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiol. Ecol. 90, 326–330 (2014).
    1. Petersen A. M. et al. Active ulcerative colitis associated with low prevalence of Blastocystis and Dientamoeba fragilis infection. Scand. J. Gastroenterol. 48, 638–639 (2013).
    1. Krogsgaard L. R., Engsbro A. L., Stensvold C. R., Nielsen H. V. & Bytzer P. The prevalence of intestinal parasites is not greater among individuals with irritable bowel syndrome: a population-based case-control study. Clin. Gastroenterol. Hepatol. 13, 507–513.e2 (2015).
    1. Rossen N. G. et al. Low prevalence of Blastocystis sp. in active ulcerative colitis patients. Eur. J. Clin. Microbiol. Infect. Dis. 34, 1039–1044 (2015).
    1. Manichanh C., Borruel N., Casellas F. & Guarner F. The gut microbiota in IBD. Nat. Rev. Gastroenterol. Hepatol. 9, 599–608 (2012).
    1. Lyra A. & Lahtinen S. Dysbiosis of the intestinal microbiota in IBS in Current concepts in colonic disorders (ed. Dr Lule G. ) 261–276 (InTech, 2012).
    1. Pham T. A. N. & Lawley T. D. Emerging insights on intestinal dysbiosis during bacterial infections. Curr. Opin. Microbiol. 17, 67–74 (2014).
    1. Raetz M. et al. Parasite-induced TH1 cells and intestinal dysbiosis cooperate in IFN-γ-dependent elimination of Paneth cells. Nat. Immunol. 14, 136–142 (2013).
    1. Torres M. F. et al. Influence of bacteria from the duodenal microbiota of patients with symptomatic giardiasis on the pathogenicity of Giardia duodenalis in gnotoxenic mice. J. Med. Microbiol. 49, 209–215 (2000).
    1. Galván-Moroyoqui J. M., del Carmen Domínguez-Robles M., Franco E. & Meza I. The interplay between Entamoeba and enteropathogenic bacteria modulates epithelial cell damage. PLos Negl. Trop. Dis. 2, e266 (2008).
    1. Verma A. K., Verma R., Ahuja V. & Paul J. Real-time analysis of gut flora in Entamoeba histolytica infected patients of Northern India. BMC Microbiol. 12, 183 (2012).
    1. Lindgreen S., Adair K. L. & Gardner P. An evaluation of the accuracy and speed of metagenome analysis tools. Sci. Rep. 6, 19233 (2015).
    1. Esposito A. & Kirschberg M. How many 16S-based studies should be included in a metagenomic conference? It may be a matter of etymology. FEMS Microbiol. Lett. 351, 145–146 (2014).
    1. Parks D. H., Tyson G. W., Hugenholtz P. & Beiko R. G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124 (2014).
    1. Lopetuso L. R., Scaldaferri F., Petito V. & Gasbarrini A. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog. 5, 23 (2013).
    1. Nourrisson C. et al. Blastocystis is associated with decrease of fecal microbiota protective bacteria: comparative analysis between patients with irritable bowel syndrome and control subjects. PLos One 9, e111868 (2014).
    1. Andersen L. O., Bonde I., Nielsen H. B. & Stensvold C. R. A retrospective metagenomics approach to studying Blastocystis. FEMS Microbiol. Ecol. 91, fiv072 (2015).
    1. Hevia A. et al. Intestinal dysbiosis associated with systemic lupus erythematosus. MBio 5, e01548–14 (2014).
    1. Milani C. et al. Assessing the fecal microbiota: an optimized Ion Torrent 16S rRNA gene-based analysis protocol. PLos One 8, e68739 (2013).
    1. Winter S. E. & Bäumler A. J. Why related bacterial species bloom simultaneously in the gut: Principles underlying the ‘like will to like’ concept. Cell. Microbiol. 16, 179–184 (2014).
    1. Loh G. & Blaut M. Role of commensal gut bacteria in inflammatory bowel diseases. Gut Microbes 3, 544–555 (2012).
    1. Brestoff J. R. & Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14, 676–684 (2013).
    1. Hamer H. M. et al. Review article: The role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27, 104–119 (2008).
    1. Tan J. et al. The role of short-chain fatty acids in health and disease. Adv. Immunol. 121, 91–119 (2014).
    1. Machiels K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275–1283 (2013).
    1. Sokol H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 105, 16731–16736 (2008).
    1. Scanlan P. D. & Stensvold C. R. Blastocystis: getting to grips with our guileful guest. Trends Parasitol. 29, 523–529 (2013).
    1. Broadhurst M. J. et al. Therapeutic helminth infection of macaques with idiopathic chronic diarrhea alters the inflammatory signature and mucosal microbiota of the colon. PLos Pathog. 8, e1003000 (2012).
    1. Lee S. C. et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLos Negl. Trop. Dis. 8, e2880 (2014).
    1. Cantacessi C. et al. Impact of experimental hookworm infection on the human gut microbiota. J. Infect. Dis. 210, 1–4 (2014).
    1. Lukeš J., Kuchta R., Scholz T. & Pomajbíková K. (Self-) infections with parasites: re-interpretations for the present. Trends Parasitol. 30, 377–385 (2014).
    1. Koren O. et al. A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLos Comput. Biol. 9, e1002863 (2013).
    1. Knights D. et al. Rethinking ‘enterotypes’. Cell Host Microbe 16, 433–437 (2014).
    1. Poirier P. et al. Development and evaluation of a real-time PCR assay for detection and quantification of Blastocystis parasites in human stool samples: Prospective study of patients with hematological malignancies. J. Clin. Microbiol. 49, 975–983 (2011).
    1. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL (2013).
    1. Maeda H. et al. Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunol. Med. Microbiol. 39, 81–86 (2003).
    1. Schloss P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
    1. Cai Y. & Sun Y. ESPRIT-Tree: Hierarchical clustering analysis of millions of 16S rRNA pyrosequences in quasilinear computational time. Nucleic Acids Res. 39, e95 (2011).
    1. Goecks J., Nekrutenko A. & Taylor J. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010).
    1. Quast C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–6 (2013).
    1. Wang Q., Garrity G. M., Tiedje J. M. & Cole J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
    1. McDonald D. et al. The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. Gigascience 1, 7 (2012).
    1. Love M. I., Huber W. & Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 15, 550 (2014).
    1. Caporaso J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. methods 7, 335–336 (2010).
    1. McMurdie P. J. & Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLos Comput. Biol. 10, e1003531 (2014).
    1. Lê S., Josse J. & Husson F. FactoMineR : An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

Source: PubMed

3
订阅