Increased Macular Pigment Optical Density and Visual Acuity following Consumption of a Buttermilk Drink Containing Lutein-Enriched Egg Yolks: A Randomized, Double-Blind, Placebo-Controlled Trial

Sanne M van der Made, Elton R Kelly, Aize Kijlstra, Jogchum Plat, Tos T J M Berendschot, Sanne M van der Made, Elton R Kelly, Aize Kijlstra, Jogchum Plat, Tos T J M Berendschot

Abstract

Purpose. To study the effect of 1-year daily consumption of a dairy drink containing lutein-enriched egg yolks on macular pigment optical density (MPOD) and visual function parameters in elderly subjects with ocular drusen and/or retinal pigment abnormalities. Methods. One hundred and one subjects were recruited to participate in this randomized, double-blind, placebo-controlled parallel intervention trial. Statistical analyses were performed with 46 subjects in the lutein group and 43 in the control group. MPOD, best corrected visual acuity (BCVA, logMAR), and dark adaptation were measured at the start of the study, after 6 months and after 12 months. Plasma lutein and zeaxanthin concentrations were assessed at baseline and at the end of the study. Results. In the lutein group, plasma lutein concentrations increased significantly from 205 ng/mL at baseline to 399 ng/mL after twelve months of intervention. MPOD increased significantly from 0.45 to 0.52 and BCVA improved significantly from -0.04 to -0.09 LogMar. Differences in rod dark adaptation rate between both groups were not significant. Conclusion. Daily consumption of a dairy drink containing lutein-enriched egg yolks for one year improves visual acuity, MPOD, and plasma lutein concentration in elderly subjects with drusen and/or retinal pigment epithelial abnormalities.

Figures

Figure 1
Figure 1
Subject flow chart.
Figure 2
Figure 2
Mean (±SE) visual acuity (LogMAR) in time for the lutein group (dark grey) and the placebo group (light grey). Change in lutein group was significantly different from change in control group (P < 0.01).
Figure 3
Figure 3
Mean (±SE) plasma lutein concentration in time for the lutein group (dark grey) and the placebo group (light grey). The increase in the lutein group was significantly different from the change in the control group (P < 0.001).
Figure 4
Figure 4
Mean ± SE macular pigment optical density (MPOD) in time for the lutein group (dark grey bars) and the placebo group (light grey bars). MPOD increased significantly in the lutein group as compared to the control group (P < 0.05).

References

    1. Congdon N. Causes and prevalence of visual impairment among adults in the United States. Archives of Ophthalmology. 2004;122(4):477–485. doi: 10.1001/archopht.122.4.477.
    1. Yasuda M., Kiyohara Y., Hata Y., et al. Nine-year incidence and risk factors for age-related macular degeneration in a defined Japanese population. The Hisayama study. Ophthalmology. 2009;116(11):2135–2140. doi: 10.1016/j.ophtha.2009.04.017.
    1. Neuner B., Komm A., Wellmann J., et al. Smoking history and the incidence of age-related macular degeneration—results from the Muenster Aging and Retina Study (MARS) cohort and systematic review and meta-analysis of observational longitudinal studies. Addictive Behaviors. 2009;34(11):938–947. doi: 10.1016/j.addbeh.2009.05.015.
    1. Tomany S. C., Cruickshanks K. J., Klein R., Klein B. E. K., Knudtson M. D. Sunlight and the 10-year incidence of age-related maculopathy: the beaver dam eye study. Archives of Ophthalmology. 2004;122(5):750–757. doi: 10.1001/archopht.122.5.750.
    1. Seddon J. M., Ajani U. A., Sperduto R. D., et al. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. The Journal of the American Medical Association. 1994;272(18):1413–1420. doi: 10.1001/jama.272.18.1413.
    1. Murray I. J., Makridaki M., van der Veen R. L. P., Carden D., Parry N. R. A., Berendschot T. T. J. M. Lutein supplementation over a one-year period in early AMD might have a mild beneficial effect on visual acuity: the CLEAR study. Investigative Ophthalmology and Visual Science. 2013;54(3):1781–1788. doi: 10.1167/iovs.12-10715.
    1. Huang Y.-M., Yan S.-F., Ma L., et al. Serum and macular responses to multiple xanthophyll supplements in patients with early age-related macular degeneration. Nutrition. 2013;29(2):387–392. doi: 10.1016/j.nut.2012.06.009.
    1. Berendschot T. T. J. M., Goldbohm R. A., Klopping W. A. A., Van de Kraats J., Van Norel J., Van Norren D. Influence of lutein supplementation on macular pigment, assessed with two objective techniques. Investigative Ophthalmology and Visual Science. 2000;41(11):3322–3326.
    1. Landrum J. T., Bone R. A., Joa H., Kilburn M. D., Moore L. L., Sprague K. E. A one year study of the macular pigment: the effect of 140 days of a lutein supplement. Experimental Eye Research. 1997;65(1):57–62. doi: 10.1006/exer.1997.0309.
    1. Hammond B. R., Jr., Johnson E. J., Russell R. M., et al. Dietary modification of human macular pigment density. Investigative Ophthalmology and Visual Science. 1997;38(9):1795–1801.
    1. Van Leeuwen R., Boekhoorn S., Vingerling J. R., et al. Dietary intake of antioxidants and risk of age-related macular degeneration. Journal of the American Medical Association. 2005;294(24):3101–3107. doi: 10.1001/jama.294.24.3101.
    1. Tan J. S. L., Wang J. J., Flood V., Rochtchina E., Smith W., Mitchell P. Dietary antioxidants and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Ophthalmology. 2008;115(2):334–341. doi: 10.1016/j.ophtha.2007.03.083.
    1. Meyers K. J., Mares J. A., Igo R. P., Jr., et al. Genetic evidence for role of carotenoids in age-related macular degeneration in the Carotenoids in Age-Related Eye Disease Study (CAREDS) Investigative Ophthalmology & Visual Science. 2014;55(1):587–599. doi: 10.1167/iovs.13-13216.
    1. Chew E. Y., Clemons T. E., Sangiovanni J. P., et al. Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 report No. 3. JAMA Ophthalmology. 2014;132(2):142–149. doi: 10.1001/jamaophthalmol.2013.7376.
    1. Ma L., Dou H.-L., Wu Y.-Q., et al. Lutein and zeaxanthin intake and the risk of age-related macular degeneration: a systematic review and meta-analysis. British Journal of Nutrition. 2012;107(3):350–359. doi: 10.1017/s0007114511004260.
    1. Ma L., Yan S. F., Huang Y. M., et al. Effect of lutein and zeaxanthin on macular pigment and visual function in patients with early age-related macular degeneration. Ophthalmology. 2012;119(11):2290–2297. doi: 10.1016/j.ophtha.2012.06.014.
    1. Chung H.-Y., Rasmussen H. M., Johnson E. J. Lutein bioavailability is higher from lutein-enriched eggs than from supplements and spinach in men. The Journal of Nutrition. 2004;134(8):1887–1893.
    1. Kelly E. R., Plat J., Haenen G. R. M. M., Kijlstra A., Berendschot T. T. J. M. The effect of modified eggs and an egg-yolk based beverage on serum lutein and zeaxanthin concentrations and macular pigment optical density: results from a randomized trial. PLoS ONE. 2014;9(3) doi: 10.1371/journal.pone.0092659.e92659
    1. Richer S., Stiles W., Statkute L., et al. Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial) Optometry. 2004;75(4):216–230. doi: 10.1016/s1529-1839(04)70049-4.
    1. Yao Y., Qiu Q. H., Wu X. W., Cai Z. Y., Xu S., Liang X. Q. Lutein supplementation improves visual performance in Chinese drivers: 1-year randomized, double-blind, placebo-controlled study. Nutrition. 2013;29(7-8):958–964. doi: 10.1016/j.nut.2012.10.017.
    1. Ma L., Lin X. M., Zou Z. Y., Xu X. R., Li Y., Xu R. A 12-week lutein supplementation improves visual function in Chinese people with long-term computer display light exposure. The British Journal of Nutrition. 2009;102(2):186–190. doi: 10.1017/s0007114508163000.
    1. Wang X., Jiang C., Zhang Y., Gong Y., Chen X., Zhang M. Role of Lutein supplementation in the management of age-related macular degeneration: meta-analysis of randomized controlled trials. Ophthalmic Research. 2014;52(4):198–205. doi: 10.1159/000363327.
    1. Bird A. C., Bressler N. M., Bressler S. B., et al. An international classification and grading system for age-related maculopathy and age-related macular degeneration. Survey of Ophthalmology. 1995;39(5):367–374. doi: 10.1016/S0039-6257(05)80092-X.
    1. Klaver C. C. W., Wolfs R. C. W., Vingerling J. R., Hofman A., de Jong P. T. V. M. Age-specific prevalence and causes of blindness and visual impairment in an older population: the Rotterdam study. Archives of Ophthalmology. 1998;116(5):653–658. doi: 10.1001/archopht.116.5.653.
    1. Vaisman N., Haenen G. R. M. M., Zaruk Y., et al. Enteral feeding enriched with carotenoids normalizes the carotenoid status and reduces oxidative stress in long-term enterally fed patients. Clinical Nutrition. 2006;25(6):897–905. doi: 10.1016/j.clnu.2006.06.002.
    1. Sabour-Pickett S., Beatty S., Connolly E., et al. Supplementation with three different macular carotenoid formulations in patients with early age-related macular degeneration. Retina. 2014;34(9):1757–1766. doi: 10.1097/IAE.0000000000000174.
    1. Weigert G., Kaya S., Pemp B., et al. Effects of lutein supplementation on macular pigment optical density and visual acuity in patients with age-related macular degeneration. Investigative Ophthalmology and Visual Science. 2011;52(11):8174–8178. doi: 10.1167/iovs.11-7522.
    1. Huchzermeyer C., Schlomberg J., Welge-Lüssen U., Berendschot T. T. J. M., Pokorny J., Kremers J. Macular pigment optical density measured by heterochromatic modulation photometry. PLoS ONE. 2014;9(10) doi: 10.1371/journal.pone.0110521.e110521
    1. van der Veen R. L. P., Berendschot T. T. J. M., Hendrikse F., Carden D., Makridaki M., Murray I. J. A new desktop instrument for measuring macular pigment optical density based on a novel technique for setting flicker thresholds. Ophthalmic and Physiological Optics. 2009;29(2):127–137. doi: 10.1111/j.1475-1313.2008.00618.x.
    1. van der Veen R. L. P., Berendschot T. T. J. M., Makridaki M., Hendrikse F., Carden D., Murray I. J. Correspondence between retinal reflectometry and a flicker-based technique in the measurement of macular pigment spatial profiles. Journal of Biomedical Optics. 2009;14(6) doi: 10.1117/1.3275481.064046
    1. Wang W., Connor S. L., Johnson E. J., Klein M. L., Hughes S., Connor W. E. Effect of dietary lutein and zeaxanthin on plasma carotenoids and their transport in lipoproteins in age-related macular degeneration. The American Journal of Clinical Nutrition. 2007;85(3):762–769.
    1. Liu R., Wang T., Zhang B., et al. Lutein and zeaxanthin supplementation and association with visual function in age-related macular degeneration. Investigative Ophthalmology & Visual Science. 2015;56(1):252–258. doi: 10.1167/iovs.14-15553.
    1. Bone R. A., Landrum J. T. Dose-dependent response of serum lutein and macular pigment optical density to supplementation with lutein esters. Archives of Biochemistry and Biophysics. 2010;504(1):50–55. doi: 10.1016/j.abb.2010.06.019.
    1. Handelman G. J., Nightingale Z. D., Lichtenstein A. H., Schaefer E. J., Blumberg J. B. Lutein and zeaxanthin concentrations in plasma after dietary supplementation with egg yolk. The American Journal of Clinical Nutrition. 1999;70(2):247–251.
    1. Roodenburg A. J. C., Leenen R., Van Het Hof K. H., Weststrate J. A., Tijburg L. B. M. Amount of fat in the diet affects bioavailability of lutein esters but not of α-carotene, β-carotene, and vitamin E in humans. The American Journal of Clinical Nutrition. 2000;71(5):1187–1193.
    1. Hammond B. R., Fletcher L. M., Roos F., Wittwer J., Schalch W. A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on photostress recovery, glare disability, and chromatic contrast. Investigative Ophthalmology & Visual Science. 2014;55(12):8583–8589. doi: 10.1167/iovs.14-15573.
    1. Thurnham D. I., Nolan J. M., Howard A. N., Beatty S. Macular response to supplementation with differing xanthophyll formulations in subjects with and without age-related macular degeneration. Graefe's Archive for Clinical and Experimental Ophthalmology. 2015;253(8):1231–1243. doi: 10.1007/s00417-014-2811-3.
    1. Akuffo K. O., Nolan J. M., Howard A. N., et al. Sustained supplementation and monitored response with differing carotenoid formulations in early age-related macular degeneration. Eye. 2015;29(7):902–912. doi: 10.1038/eye.2015.64.
    1. Borel P., Desmarchelier C., Nowicki M., Bott R., Morange S., Lesavre N. Interindividual variability of lutein bioavailability in healthy men: characterization, genetic variants involved, and relation with fasting plasma lutein concentration. The American Journal of Clinical Nutrition. 2014;100(1):168–175. doi: 10.3945/ajcn.114.085720.
    1. Richer S. P., Stiles W., Graham-Hoffman K., et al. Randomized, double-blind, placebo-controlled study of zeaxanthin and visual function in patients with atrophic age-related macular degeneration: the Zeaxanthin and Visual Function Study (ZVF) FDA IND #78, 973. Optometry. 2011;82(11):667.e6–680.e6. doi: 10.1016/j.optm.2011.08.008.
    1. Weggemans R. M., Zock P. L., Katan M. B. Dietary cholesterol from eggs increases the ratio of total cholesterol to high-density lipoprotein cholesterol in humans: a meta-analysis. The American Journal of Clinical Nutrition. 2001;73(5):885–891.
    1. Rong Y., Chen L., Zhu T., et al. Egg consumption and risk of coronary heart disease and stroke: dose-response meta-analysis of prospective cohort studies. The British Medical Journal. 2013;346 doi: 10.1136/bmj.e8539.e8539
    1. van der Made S. M., Kelly E. R., Berendschot T. T. J. M., Kijlstra A., Lütjohann D., Plat J. Consuming a buttermilk drink containing lutein-enriched egg yolk daily for 1 year increased plasma lutein but did not affect serum lipid or lipoprotein concentrations in adults with early signs of age-related macular degeneration. The Journal of Nutrition. 2014;144(9):1370–1377. doi: 10.3945/jn.114.195503.

Source: PubMed

3
订阅