Plasma metabolomics and proteomics profiling after a postprandial challenge reveal subtle diet effects on human metabolic status

Linette Pellis, Marjan J van Erk, Ben van Ommen, Gertruud C M Bakker, Henk F J Hendriks, Nicole H P Cnubben, Robert Kleemann, Eugene P van Someren, Ivana Bobeldijk, Carina M Rubingh, Suzan Wopereis, Linette Pellis, Marjan J van Erk, Ben van Ommen, Gertruud C M Bakker, Henk F J Hendriks, Nicole H P Cnubben, Robert Kleemann, Eugene P van Someren, Ivana Bobeldijk, Carina M Rubingh, Suzan Wopereis

Abstract

We introduce the metabolomics and proteomics based Postprandial Challenge Test (PCT) to quantify the postprandial response of multiple metabolic processes in humans in a standardized manner. The PCT comprised consumption of a standardized 500 ml dairy shake containing respectively 59, 30 and 12 energy percent lipids, carbohydrates and protein. During a 6 h time course after PCT 145 plasma metabolites, 79 proteins and 7 clinical chemistry parameters were quantified. Multiple processes related to metabolism, oxidation and inflammation reacted to the PCT, as demonstrated by changes of 106 metabolites, 31 proteins and 5 clinical chemistry parameters. The PCT was applied in a dietary intervention study to evaluate if the PCT would reveal additional metabolic changes compared to non-perturbed conditions. The study consisted of a 5-week intervention with a supplement mix of anti-inflammatory compounds in a crossover design with 36 overweight subjects. Of the 231 quantified parameters, 31 had different responses over time between treated and control groups, revealing differences in amino acid metabolism, oxidative stress, inflammation and endocrine metabolism. The results showed that the acute, short term metabolic responses to the PCT were different in subjects on the supplement mix compared to the controls. The PCT provided additional metabolic changes related to the dietary intervention not observed in non-perturbed conditions. Thus, a metabolomics based quantification of a standardized perturbation of metabolic homeostasis is more informative on metabolic status and subtle health effects induced by (dietary) interventions than quantification of the homeostatic situation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-011-0320-5) contains supplementary material, which is available to authorized users.

Figures

Fig. 1
Fig. 1
The six different observed postprandial time course profiles. a The time cluster profiles represented by the 142 different plasma metabolites and proteins with a significant effect of time. The red line represents the average cluster time profile. The x-axes were expressed as time (hours), the y-axes were expressed as relatively scaled concentrations. Time profile cluster 1 represented 21 plasma parameters with a classical absorption profile, reaching maximum values after 1–2 h, followed by a continued reduction towards minimal values at the final (6 h) time point. Time profile cluster 2, including 44 parameters, was similar to cluster 1, with the main difference that parameters in cluster 2 reached minimum values around 4 h after postprandial challenge. Thus, the time profile clusters 1 and 2 mainly differ in the duration of the response (4 or 6 h after postprandial challenge). Time profile cluster 3 represented the parameters that decreased upon the PCT, with a subsequent recovery phase. The average time required to reach lowest plasma concentrations is 2–3 h. This cluster contained 24 parameters with a significant time effect. Time profile cluster 4 (19 parameters) included parameters that steadily decreased during the 6 h time course. Time profile cluster 5 represented 16 plasma parameters that increased during most of the 6 h time course. The average time required to reach highest plasma concentrations was ~4 h. Finally, time profile cluster 6 included 18 parameters with a continuous increase in plasma concentration after an initial lag phase of approximately two hours. b The different time profile clusters summarized in one figure (Color figure online)
Fig. 2
Fig. 2
Responses to PCT after AIDM and placebo intervention. Figures show mean (±SEM) difference versus t0 for each time point. Differences versus t0 were calculated for 35 (metabolites) or 33 subjects (proteins). Diamond indicates placebo intervention and square indicates AIDM intervention. MDC Macrophage-derived chemokine, VCAM-1 vascular cell adhesion protein 1, vWF von Willebrand factor. Y-axis are relative concentrations for metabolites C22:6 fatty acid and lactose; for proteins units for difference in concentration (compared to t0) are as follows: MDC pg/ml, VCAM-1 ng/ml, fibrinogen mg/ml, vWF μg/ml and glucagon pg/ml
Fig. 3
Fig. 3
Network showing connections between endocrine factors with a differential response to PCT after AIDM intervention compared to placebo (MetaCore, network option auto expand)

References

    1. Bakker GCM, Van Erk MJ, Pellis L, Wopereis S, Rubingh CM, Cnubben NHP, Kooistra T, Van Ommen B, Hendriks HFJ. An antiinflammatory dietary mix modulates inflammation and oxidative and metabolic stress in overweight men: A nutrigenomics approach. American Journal of Clinical Nutrition. 2010;91(4):1044–1059. doi: 10.3945/ajcn.2009.28822.
    1. Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, van Ommen B, Smilde AK. Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation. Analytical Chemistry. 2006;78(2):567–574. doi: 10.1021/ac051495j.
    1. Brevik A, Veierod MB, Drevon CA, Andersen LF. Evaluation of the odd fatty acids 15:0 and 17:0 in serum and adipose tissue as markers of intake of milk and dairy fat. European Journal of Clinical Nutrition. 2005;59(12):1417–1422. doi: 10.1038/sj.ejcn.1602256.
    1. Carroll MF, Schade DS. Timing of antioxidant vitamin ingestion alters postprandial proatherogenic serum markers. Circulation. 2003;108(1):24–31. doi: 10.1161/01.CIR.0000074221.68903.77.
    1. Cawston T, Young D. Proteinases involved in matrix turnover during cartilage and bone breakdown. Cell and Tissue Research. 2010;339(1):221–235. doi: 10.1007/s00441-009-0887-6.
    1. Chakrabarti S, Blair P, Freedman JE. CD40-40L signaling in vascular inflammation. Journal of Biological Chemistry. 2007;282(25):18307–18317. doi: 10.1074/jbc.M700211200.
    1. Cianflone K, Paglialunga S, Roy C. Intestinally derived lipids: Metabolic regulation and consequences—An overview. Atherosclerosis Supplements. 2008;9(2):63–68. doi: 10.1016/j.atherosclerosissup.2008.05.014.
    1. Constans J, Conri C. Circulating markers of endothelial function in cardiovascular disease. Clinica Chimica Acta. 2006;368(1–2):33–47. doi: 10.1016/j.cca.2005.12.030.
    1. Devaraj S, Wang-Polagruto J, Polagruto J, Keen CL, Jialal I. High-fat, energy-dense, fast-food-style breakfast results in an increase in oxidative stress in metabolic syndrome. Metabolism. 2008;57(6):867–870. doi: 10.1016/j.metabol.2008.02.016.
    1. Elliott R, Pico C, Dommels Y, Wybranska I, Hesketh J, Keijer J. Nutrigenomic approaches for benefit-risk analysis of foods and food components: Defining markers of health. British Journal of Nutrition. 2007;98(6):1095–1100. doi: 10.1017/S0007114507803400.
    1. Esposito K, Nappo F, Giugliano F, Di PC, Ciotola M, Barbieri M, Paolisso G, Giugliano D. Meal modulation of circulating interleukin 18 and adiponectin concentrations in healthy subjects and in patients with type 2 diabetes mellitus. American Journal of Clinical Nutrition. 2003;78(6):1135–1140.
    1. Frayn, K. N. (2010). Metabolic regulation—A human perspective. Blackwell Publishers.
    1. Ghanim H, Abuaysheh S, Sia CL, Korzeniewski K, Chaudhuri A, Fernandez-Real JM, Dandona P. Increase in plasma endotoxin concentrations and the expression of toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal. Diabetes Care. 2009;32(12):2281–2287. doi: 10.2337/dc09-0979.
    1. Goldtein MS, Henry WL, Huddlestun B, Levine R. Action of insulin on transfer of sugars across cell barriers; common chemical configuration of substances responsive to action of the hormone. American Journal of Physiology. 1953;173(2):207–211.
    1. Habito RC, Ball MJ. Postprandial changes in sex hormones after meals of different composition. Metabolism. 2001;50(5):505–511. doi: 10.1053/meta.2001.20973.
    1. Jackson KG, Armah CK, Minihane AM. Meal fatty acids and postprandial vascular reactivity. Biochemical Society Transactions. 2007;035(3):451–453. doi: 10.1042/BST0350451.
    1. Kakafika AI, Liberopoulos EN, Mikhailidis DP. Fibrinogen: A predictor of vascular disease. Current Pharmaceutical Design. 2007;13(16):1647–1659. doi: 10.2174/138161207780831310.
    1. Kamat V, Hecht WL, Rubin RT. Influence of meal composition on the postprandial response of the pituitary-thyroid axis. European Journal of Endocrinology. 1995;133(1):75–79. doi: 10.1530/eje.0.1330075.
    1. Koek M, van der Kloet F, Kleemann R, Kooistra T, Verheij E, Hankemeier T. Semi-automated non-target processing in GC × GC-MS metabolomics analysis: Applicability for biomedical studies. Metabolomics. 2011;7(1):1–14. doi: 10.1007/s11306-010-0219-6.
    1. Lopez-Miranda J, Williams C, Lairon D. Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. British Journal of Nutrition. 2007;98(3):458–473. doi: 10.1017/S000711450774268X.
    1. Lundman P, Boquist S, Samnegsrd A, Bennermo M, Held C, Ericsson CG, Silveira A, Hamsten A, Tornvall P. A high-fat meal is accompanied by increased plasma interleukin-6 concentrations. Nutrition, Metabolism and Cardiovascular Diseases. 2007;17(3):195–202. doi: 10.1016/j.numecd.2005.11.009.
    1. Margioris AN. Fatty acids and postprandial inflammation. Current Opinion in Clinical Nutrition & Metabolic Care. 2009;12(2):129–137. doi: 10.1097/MCO.0b013e3283232a11.
    1. Minisola S, Antonelli R, Mazzuoli G. Clinical significance of free plasma hydroxyproline measurement in metabolic bone disease. Journal of Clinical Chemistry & Clinical Biochemistry. 1985;23(9):515–519.
    1. Nakatsuji H, Kishida K, Kitamura T, Nakajima C, Funahashi T, Shimomura I. Dysregulation of glucose, insulin, triglyceride, blood pressure, and oxidative stress after an oral glucose tolerance test in men with abdominal obesity. Metabolism: Clinical and Experimental. 2010;59(4):520–526. doi: 10.1016/j.metabol.2009.08.013.
    1. Nappo F, Esposito K, Cioffi M, Giugliano G, Molinari AM, Paolisso G, Marfella R, Giugliano D. Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: Role of fat and carbohydrate meals. Journal of the American College of Cardiology. 2002;39(7):1145–1150. doi: 10.1016/S0735-1097(02)01741-2.
    1. Neri S, Signorelli SS, Torrisi B, Pulvirenti D, Mauceri B, Abate G, Ignaccolo L, Bordonaro F, Cilio D, Calvagno S, Leotta C. Effects of antioxidant supplementation on postprandial oxidative stress and endothelial dysfunction: A single-blind, 15-day clinical trial in patients with untreated type 2 diabetes, subjects with impaired glucose tolerance, and healthy controls. Clinical Therapeutics. 2005;27(11):1764–1773. doi: 10.1016/j.clinthera.2005.11.006.
    1. Nowatzky J, Howard R, Pillinger MH, Krasnokutsky S. The role of uric acid and other crystals in osteoarthritis. Current Rheumatology Reports. 2010;12(2):42–148. doi: 10.1007/s11926-010-0091-4.
    1. Overkamp KM, Bakker BM, Kotter P, Luttik MA, van Dijken JP, Pronk JT. Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Applied and Environmental Microbiology. 2002;68(6):2814–2821. doi: 10.1128/AEM.68.6.2814-2821.2002.
    1. Paglialunga S, Cianflone K. Regulation of postprandial lipemia: An update on current trends. Applied Physiology, Nutrition, and Metabolism. 2007;32(1):61–75. doi: 10.1139/h06-100.
    1. Parfitt AM. Targeted and nontargeted bone remodeling: Relationship to basic multicellular unit origination and progression. Bone. 2002;30(1):5–7. doi: 10.1016/S8756-3282(01)00642-1.
    1. Poppitt SD, Keogh GF, Lithander FE, Wang Y, Mulvey TB, Chan YK, McArdle BH, Cooper GJS. Postprandial response of adiponectin, interleukin-6, tumor necrosis factor-[alpha], and C-reactive protein to a high-fat dietary load. Nutrition. 2008;24(4):322–329. doi: 10.1016/j.nut.2007.12.012.
    1. Pugeat M, Nader N, Hogeveen K, Raverot G, Dechaud H, Grenot C. Sex hormone-binding globulin gene expression in the liver: Drugs and the metabolic syndrome. Molecular and Cellular Endocrinology. 2010;316(1):53–59. doi: 10.1016/j.mce.2009.09.020.
    1. Riches PL, Ralston SH. Recent insights into the biology of bone turnover. Journal of the Royal College of Physicians of Edinburgh. 2010;40(1):66–69. doi: 10.4997/JRCPE.2010.113.
    1. Schett G, Kiechl S, Bonora E, Zwerina J, Mayr A, Axmann R, Weger S, Oberhollenzer F, Lorenzini R, Willeit J. Vascular cell adhesion molecule 1 as a predictor of severe osteoarthritis of the hip and knee joints. Arthritis and Rheumatism. 2009;60(8):2381–2389. doi: 10.1002/art.24757.
    1. Shaham O, Wei R, Wang TJ, Ricciardi C, Lewis GD, Vasan RS, Carr SA, Thadhani R, Gerszten RE, Mootha VK. Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Molecular Systems Biology. 2008;4:214–222. doi: 10.1038/msb.2008.50.
    1. Spallarossa P, Garibaldi S, Barisione C, Ghigliotti G, Altieri P, Tracchi I, Fabbi P, Barsotti A, Brunelli C. Postprandial serum induces apoptosis in endothelial cells: Role of polymorphonuclear-derived myeloperoxidase and metalloproteinase-9 activity. Atherosclerosis. 2008;198(2):458–467. doi: 10.1016/j.atherosclerosis.2007.11.030.
    1. Tsai WC, Li YH, Lin CC, Chao TH, Chen JH. Effects of oxidative stress on endothelial function after a high-fat meal. Clinical Science. 2004;106(3):315–319. doi: 10.1042/CS20030227.
    1. van der Kloet FM, Bobeldijk I, Verheij ER, Jellema RH. Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. Journal of Proteome Research. 2009;8(11):5132–5141. doi: 10.1021/pr900499r.
    1. van Eijk HM, Deutz NE, Wagenmakers AJ, Soeters PB. 3-Methylhistidine determined in plasma by “high-performance” lipid chromatography. Clinical Chemistry. 1990;36(3):556–559.
    1. van Ommen B, Keijer J, Heil SG, Kaput J. Challenging homeostasis to define biomarkers for nutrition related health. Molecular Nutrition & Food Research. 2009;53(7):795–804. doi: 10.1002/mnfr.200800390.
    1. van Ommen B, Keijer J, Kleemann R, Elliott R, Drevon C, McArdle H, Gibney M, Muller M. The challenges for molecular nutrition research 2: Quantification of the nutritional phenotype. Genes & Nutrition. 2008;3(2):51–59. doi: 10.1007/s12263-008-0084-3.
    1. Volek JS, Gomez AL, Love DM, Avery NG, Sharman MJ, Kraemer WJ. Effects of a high-fat diet on postabsorptive and postprandial testosterone responses to a fat-rich meal. Metabolism. 2001;50(11):1351–1355. doi: 10.1053/meta.2001.25648.
    1. Walsh JS, Henriksen DB. Feeding and bone. Archives of Biochemistry and Biophysics. 2010;503(1):11–19. doi: 10.1016/j.abb.2010.06.020.
    1. Wang H, Eckel RH. Lipoprotein lipase: From gene to obesity. American Journal of Physiology-Endocrinology and Metabolism. 2009;297(2):E271–E288. doi: 10.1152/ajpendo.90920.2008.
    1. Waterworth DM, Talmud PJ, Luan J, Flavell DM, Byrne CD, Humphries SE, Wareham NJ. Variants in the APOC3 promoter insulin responsive element modulate insulin secretion and lipids in middle-aged men. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2003;1637(3):200–206. doi: 10.1016/S0925-4439(03)00021-8.
    1. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(10):3698–3703. doi: 10.1073/pnas.0812874106.
    1. Wopereis S, Rubingh CM, Van Erk MJ, Verheij ER, van Vliet VT, Cnubben NH, Smilde AK, Van der Greef J, Van Ommen B, Hendriks HF. Metabolic profiling of the response to an oral glucose tolerance test detects subtle metabolic changes. PLoS One. 2009;4(2):e4525. doi: 10.1371/journal.pone.0004525.
    1. Wybranska I, Malczewska-Malec M, Niedbal S, Naskalski JW, Dembinska-Kiec A. The TNF-alpha gene NcoI polymorphism at position-308 of the promoter influences insulin resistance, and increases serum triglycerides after postprandial lipaemia in familiar obesity. Clinical Chemistry and Laboratory Medicine. 2003;41(4):501–510. doi: 10.1515/CCLM.2003.076.
    1. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiological Reviews. 2000;80(3):1107–1213.
    1. Zhao X, Peter A, Fritsche J, Elcnerova M, Fritsche A, Haring HU, Schleicher ED, Xu G, Lehmann R. Changes of the plasma metabolome during an oral glucose tolerance test: Is there more than glucose to look at? American Journal of Physiology-Endocrinology and Metabolism. 2009;296(2):E384–E393. doi: 10.1152/ajpendo.90748.2008.
    1. Zivkovic A, Wiest M, Nguyen U, Nording M, Watkins S, German J. Assessing individual metabolic responsiveness to a lipid challenge using a targeted metabolomic approach. Metabolomics. 2008;5(2):209–218. doi: 10.1007/s11306-008-0136-0.

Source: PubMed

3
订阅