Liquid Biopsy in Colorectal Carcinoma: Clinical Applications and Challenges

Drahomír Kolenčík, Stephanie N Shishido, Pavel Pitule, Jeremy Mason, James Hicks, Peter Kuhn, Drahomír Kolenčík, Stephanie N Shishido, Pavel Pitule, Jeremy Mason, James Hicks, Peter Kuhn

Abstract

Colorectal carcinoma (CRC) is characterized by wide intratumor heterogeneity with general genomic instability and there is a need for improved diagnostic, prognostic, and therapeutic tools. The liquid biopsy provides a noninvasive route of sample collection for analysis of circulating tumor cells (CTCs) and genomic material, including cell-free DNA (cfDNA), as a complementary biopsy to the solid tumor tissue. The solid biopsy is critical for molecular characterization and diagnosis at the time of collection. The liquid biopsy has the advantage of longitudinal molecular characterization of the disease, which is crucial for precision medicine and patient-oriented treatment. In this review, we provide an overview of CRC and the different methodologies for the detection of CTCs and cfDNA, followed by a discussion on the potential clinical utility of the liquid biopsy in CRC patient care, and lastly, current challenges in the field.

Keywords: CRC; CTC; cfDNA; circulating free DNA; circulating tumor DNA; circulating tumor cell; colorectal carcinoma; ctDNA; liquid biopsy; precision medicine.

Conflict of interest statement

James Hicks, Clinical Advisory Board, Epic Sciences, Inc. P. Kuhn received stock and dividends, Epic Sciences, Inc. Epic Sciences is evaluating the feasibility of translating the circulating tumor cell (CTC) assay into a commercial format.

Figures

Figure 1
Figure 1
Colorectal carcinoma (CRC) is categorized based on its anatomic location. Right CRC (RCC) is localized in caecum, ascending colon or two proximal thirds of transverse colon. Left CRC (LCC) is defined as CRC in distal third of transverse colon, descending colon, sigmoid colon, or rectum. Clinical applications of the liquid biopsy in CRC include diagnosis, treatment selection, prognostic, and therapy monitoring.

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492.
    1. Arnold M., Sierra M.S., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2016;66:683–691. doi: 10.1136/gutjnl-2015-310912.
    1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA A Cancer J. Clin. 2019;69:7–34. doi: 10.3322/caac.21551.
    1. Araghi M., Soerjomataram I., Jenkins M.A., Brierley J., Morris E., Bray F., Arnold M. Global trends in colorectal cancer mortality: Projections to the year 2035. Int. J. Cancer. 2019;144:2992–3000. doi: 10.1002/ijc.32055.
    1. Sharp L., O’Leary E., O’Ceilleachair A., Skally M., Hanly P. Financial Impact of Colorectal Cancer and Its Consequences. Dis. Colon Rectum. 2018;61:27–35. doi: 10.1097/DCR.0000000000000923.
    1. John S.K.P., George S., Primrose J.N., Fozard J.B.J. Symptoms and signs in patients with colorectal cancer. Color. Dis. 2010;13:17–25. doi: 10.1111/j.1463-1318.2010.02221.x.
    1. Uraoka T., Hosoe N., Yahagi N. Colonoscopy: Is it as effective as an advanced diagnostic tool for colorectal cancer screening? Expert Rev. Gastroenterol. Hepatol. 2014;9:129–132. doi: 10.1586/17474124.2015.960397.
    1. Baek S.K. Laterality: Right-Sided and Left-Sided Colon Cancer. Ann. Coloproctol. 2017;33:205–206. doi: 10.3393/ac.2017.33.6.205.
    1. Helvaci K., Eraslan E., Yildiz F., Tufan G., Demirci U., Berna Oksuzoglu O., Yalcintas Arslan U. Comparison of clinicopathological and survival features of right and left colon cancers. J. BUON Off. J. Balk. Union Oncol. 2019;24:1845–1851.
    1. Mik M., Dziki Ł., Trzciński R. Risk factors of 30-day mortality following surgery for colorectal cancer. Pol. J. Surg. 2016;88:26–31. doi: 10.1515/pjs-2016-0023.
    1. Doubeni C.A., Corley D.A., Quinn V.P., Jensen C.D., Zauber A.G., Goodman M., Johnson J.R., Mehta S.J., Becerra T.A., Zhao W.K., et al. Effectiveness of screening colonoscopy in reducing the risk of death from right and left colon cancer: A large community-based study. Gut. 2016;67:291–298. doi: 10.1136/gutjnl-2016-312712.
    1. Nawa T., Kato J., Kawamoto H., Okada H., Yamamoto H., Kohno H., Endo H., Shiratori Y. Differences between right- and left-sided colon cancer in patient characteristics, cancer morphology and histology. J. Gastroenterol. Hepatol. 2008;23:418–423. doi: 10.1111/j.1440-1746.2007.04923.x.
    1. Richman S.D., Chambers P., Seymour M.T., Daly C., Grant S., Hemmings G., Quirke P. Intra-tumoral Heterogeneity of KRAS and BRAF Mutation Status in Patients with Advanced Colorectal Cancer (aCRC) and Cost-Effectiveness of Multiple Sample Testing. Anal. Cell. Pathol. 2011;34:61–66. doi: 10.1155/2011/393521.
    1. Smith G., Carey F.A., Beattie J., Wilkie M.J.V., Lightfoot T.J., Coxhead J., Garner R.C., Steele R.J., Wolf C.R. Mutations in APC, Kirsten-ras, and p53—Alternative genetic pathways to colorectal cancer. Proc. Natl. Acad. Sci. USA. 2002;99:9433–9438. doi: 10.1073/pnas.122612899.
    1. Ionov Y., Peinado M.A., Malkhosyan S., Shibata D., Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363:558–561. doi: 10.1038/363558a0.
    1. Samowitz W.S. Poor Survival Associated with the BRAF V600E Mutation in Microsatellite-Stable Colon Cancers. Cancer Res. 2005;65:6063–6069. doi: 10.1158/0008-5472.CAN-05-0404.
    1. Shen L., Catalano P.J., Benson A.B., O’Dwyer P., Hamilton S.R., Issa J.-P. Association between DNA methylation and shortened survival in patients with advanced colorectal cancer treated with 5-fluorouracil based chemotherapy. Clin. Cancer Res. 2007;13:6093–6098. doi: 10.1158/1078-0432.CCR-07-1011.
    1. Weisenberger D.J., Siegmund K.D., Campan M., Young J., Long T.I., Faasse M., Kang G., Widschwendter M., Weener D., Buchanan D., et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 2006;38:787–793. doi: 10.1038/ng1834.
    1. Hadjihannas M.V., Brückner M., Jerchow B., Birchmeier W., Dietmaier W., Behrens J. Aberrant Wnt/beta-catenin signaling can induce chromosomal instability in colon cancer. Proc. Natl. Acad. Sci. USA. 2006;103:10747–10752. doi: 10.1073/pnas.0604206103.
    1. Cisyk A., Penner-Goeke S., Lichtensztejn Z., Nugent Z., Wightman R., Singh H., McManus K.J. Characterizing the prevalence of chromosome instability in interval colorectal cancer. Neoplasia. 2015;17:306–316. doi: 10.1016/j.neo.2015.02.001.
    1. Thomas D.C., Umar A., Kunkel T. Microsatellite instability and mismatch repair defects in cancer cells. Mutat. Res. Mol. Mech. Mutagen. 1996;350:201–205. doi: 10.1016/0027-5107(95)00112-3.
    1. Boland C.R., Thibodeau S.N., Hamilton S.R., Sidransky D., Eshleman J.R., Burt R.W., Meltzer S.J., Rodriguez-Bigas M.A., Fodde R., Ranzani G.N., et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: Development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–5257.
    1. Alexander J., Watanabe T., Wu T.-T., Rashid A., Li S., Hamilton S.R. Histopathological Identification of Colon Cancer with Microsatellite Instability. Am. J. Pathol. 2001;158:527–535. doi: 10.1016/S0002-9440(10)63994-6.
    1. Lanza G., Gafà R., Maestri I., Santini A., Matteuzzi M., Cavazzini L. Immunohistochemical Pattern of MLH1/MSH2 Expression Is Related to Clinical and Pathological Features in Colorectal Adenocarcinomas with Microsatellite Instability. Mod. Pathol. 2002;15:741–749. doi: 10.1097/01.MP.0000018979.68686.B2.
    1. Ricciardiello L., Ceccarelli C., Angiolini G., Pariali M., Chieco P., Paterini P., Biasco G., Martinelli G.N., Roda E., Bazzoli F. High Thymidylate Synthase Expression in Colorectal Cancer with Microsatellite Instability: Implications for Chemotherapeutic Strategies. Clin. Cancer Res. 2005;11:4234–4240. doi: 10.1158/1078-0432.CCR-05-0141.
    1. Trautmann K., Terdiman J.P., French A.J., Roydasgupta R., Sein N., Kakar S., Fridlyand J., Snijders A.M., Albertson N.G., Thibodeau S.N., et al. Chromosomal Instability in Microsatellite-Unstable and Stable Colon Cancer. Clin. Cancer Res. 2006;12:6379–6385. doi: 10.1158/1078-0432.CCR-06-1248.
    1. Peltomaki P. Deficient DNA mismatch repair: A common etiologic factor for colon cancer. Hum. Mol. Genet. 2001;10:735–740. doi: 10.1093/hmg/10.7.735.
    1. Hinoue T., Weisenberger D.J., Lange C.P., Shen H., Byun H.-M., Berg D.V.D., Malik S., Pan F., Noushmehr H., Van Dijk C.M., et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 2011;22:271–282. doi: 10.1101/gr.117523.110.
    1. Ogino S., Nosho K., Kirkner G.J., Kawasaki T., Meyerhardt J.A., Loda M., Giovannucci E.L., Fuchs C.S. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 2008;58:90–96. doi: 10.1136/gut.2008.155473.
    1. Toyota M., Ahuja N., Ohe-Toyota M., Herman J.G., Baylin S.B., Issa J.-P. CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA. 1999;96:8681–8686. doi: 10.1073/pnas.96.15.8681.
    1. Huang D., Sun W., Zhou Y., Li P., Chen F., Chen H., Xia D., Xu E., Lai M., Wu Y., et al. Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev. 2018;37:173–187. doi: 10.1007/s10555-017-9726-5.
    1. Yaeger R., Chatila W.K., Lipsyc M.D., Hechtman J., Cercek A., Sanchez-Vega F., Jayakumaran G., Middha S., Zehir A., Donoghue M.T., et al. Clinical Sequencing Defines the Genomic Landscape of Metastatic Colorectal Cancer. Cancer Cell. 2018;33:125–136.e3. doi: 10.1016/j.ccell.2017.12.004.
    1. Horst D. Plastizität der WNT-Signalwegaktivität im Kolonkarzinom. Der Pathol. 2012;33:194–197. doi: 10.1007/s00292-012-1660-2.
    1. Kongkanuntn R., Bubb V.J., Sansom O.J., Wyllie A.H., Harrison D.J., Clarke A. Dysregulated expression of β-catenin marks early neoplastic change in Apc mutant mice, but not all lesions arising in Msh2 deficient mice. Oncogene. 1999;18:7219–7225. doi: 10.1038/sj.onc.1203181.
    1. Jeong W.-J., Yoon J.-B., Park J.-C., Lee S.-H., Kaduwal S., Kim H., Choi K.-Y. Ras Stabilization Through Aberrant Activation of Wnt/ -Catenin Signaling Promotes Intestinal Tumorigenesis. Sci. Signal. 2012;5:ra30. doi: 10.1126/scisignal.2002242.
    1. Lemieux E., Cagnol S., Beaudry K., Carrier J., Rivard N. Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene. 2014;34:4914–4927. doi: 10.1038/onc.2014.416.
    1. Hatzivassiliou G., Haling J.R., Chen H., Song K., Price S., Heald R., Hewitt J.F.M., Zak M., Peck A., Orr C., et al. Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature. 2013;501:232–236. doi: 10.1038/nature12441.
    1. Haigis K.M., Kendall K.R., Wang Y., Cheung A., Haigis M.C., Glickman J.N., Niwa-Kawakita M., Sweet-Cordero A., Sebolt-Leopold J., Shannon K.M., et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat. Genet. 2008;40:600–608. doi: 10.1038/ng.115.
    1. Pacold M.E., Suire S., Perisic O., Lara-González S., Davis C.T., Walker E.H., Hawkins P., Stephens L.R., Eccleston J.F., Williams R.L. Crystal Structure and Functional Analysis of Ras Binding to Its Effector Phosphoinositide 3-Kinase γ. Cell. 2000;103:931–944. doi: 10.1016/S0092-8674(00)00196-3.
    1. Murillo M.M., Zelenay S., Nye E., Castellano E., Lassailly F., Stamp G., Downward J. RAS interaction with PI3K p110α is required for tumor-induced angiogenesis. J. Clin. Investig. 2014;124:3601–3611. doi: 10.1172/JCI74134.
    1. Di Nicolantonio F., Martini M., Molinari F., Sartore-Bianchi A., Arena S., Saletti P., De Dosso S., Mazzucchelli L., Frattini M., Siena S., et al. Wild-Type BRAF Is Required for Response to Panitumumab or Cetuximab in Metastatic Colorectal Cancer. J. Clin. Oncol. 2008;26:5705–5712. doi: 10.1200/JCO.2008.18.0786.
    1. Souglakos J., Philips J., Wang R., Marwah S., Silver M., Tzardi M., Silver J., Ogino S., Hooshmand S., Kwak E., et al. Prognostic and predictive value of common mutations for treatment response and survival in patients with metastatic colorectal cancer. Br. J. Cancer. 2009;101:465–472. doi: 10.1038/sj.bjc.6605164.
    1. Yokota T., Ura T., Shibata N., Takahari D., Shitara K., Nomura M., Kondo C., Mizota A., Utsunomiya S., Muro K., et al. BRAF mutation is a powerful prognostic factor in advanced and recurrent colorectal cancer. Br. J. Cancer. 2011;104:856–862. doi: 10.1038/bjc.2011.19.
    1. Chen J., Guo F., Shi X., Zhang L., Zhang A., Jin H., He Y. BRAF V600E mutation and KRAS codon 13 mutations predict poor survival in Chinese colorectal cancer patients. BMC Cancer. 2014;14:802. doi: 10.1186/1471-2407-14-802.
    1. Sahin I.H., Kazmi S.M., Yorio J.T., Bhadkamkar N.A., Kee B.K., Garrett C.R. Rare Though Not Mutually Exclusive: A Report of Three Cases of Concomitant KRAS and BRAF Mutation and a Review of the Literature. J. Cancer. 2013;4:320–322. doi: 10.7150/jca.3619.
    1. Li A.-J., Li H.-G., Tang E.-J., Wu W., Chen Y., Jiang H.-H., Lin M.-B., Yin L. PIK3CA and TP53 mutations predict overall survival of stage II/III colorectal cancer patients. World J. Gastroenterol. 2018;24:631–640. doi: 10.3748/wjg.v24.i5.631.
    1. Lu T., Li J. Clinical applications of urinary cell-free DNA in cancer: Current insights and promising future. Am. J. Cancer Res. 2017;7:2318–2332.
    1. Sidransky D., Tokino T., Hamilton S.R., Kinzler K., Levin B., Frost P., Vogelstein B. Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors. Science. 1992;256:102–105. doi: 10.1126/science.1566048.
    1. De Mattos-Arruda L., Mayor R., Ng C.K.Y., Weigelt B., Martinez-Ricarte F., Torrejon D., Oliveira M., Arias A., Raventós C., Tang J., et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat. Commun. 2015;6:8839. doi: 10.1038/ncomms9839.
    1. Stefancu A., Badarinza M., Moisoiu V., Iancu S.D., Serban O., Leopold N., Fodor D. SERS-based liquid biopsy of saliva and serum from patients with Sjögren’s syndrome. Anal. Bioanal. Chem. 2019;411:5877–5883. doi: 10.1007/s00216-019-01969-x.
    1. Song Z., Cai Z., Yan J., Shao Y.W., Zhang Y. Liquid biopsies using pleural effusion-derived exosomal DNA in advanced lung adenocarcinoma. Transl. Lung Cancer Res. 2019;8:392–400. doi: 10.21037/tlcr.2019.08.14.
    1. Peterson V.M., Castro C.M., Chung J., Miller N.C., Ullal A.V., Castano M.D., Penson R.T., Lee H., Birrer M.J., Weissleder R. Ascites analysis by a microfluidic chip allows tumor-cell profiling. Proc. Natl. Acad. Sci. USA. 2013;110:E4978–E4986. doi: 10.1073/pnas.1315370110.
    1. Kim M.-Y., Oskarsson T., Acharyya S., Nguyen N.X., Zhang X.H.-F., Norton L., Massagué J. Tumor Self-Seeding by Circulating Cancer Cells. Cell. 2009;139:1315–1326. doi: 10.1016/j.cell.2009.11.025.
    1. Ruiz C., Li J., Luttgen M.S., Kolatkar A., Kendall J.T., Flores E., Topp Z., Samlowski W.E., McClay E., Bethel K., et al. Limited genomic heterogeneity of circulating melanoma cells in advanced stage patients. Phys. Biol. 2015;12:016008. doi: 10.1088/1478-3975/12/1/016008.
    1. Che J., Yu V., Garon E.B., Goldman J.W., Di Carlo D. Biophysical isolation and identification of circulating tumor cells. Lab Chip. 2017;17:1452–1461. doi: 10.1039/C7LC00038C.
    1. Harouaka R., Nisic M., Zheng S.-Y. Circulating tumor cell enrichment based on physical properties. J. Lab. Autom. 2013;18:455–468. doi: 10.1177/2211068213494391.
    1. Marrinucci D., Bethel K., Kolatkar A., Luttgen M.S., Malchiodi M., Baehring F., Voigt K., Lazar D., Nieva J.J., Bazhenova L., et al. Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys. Biol. 2012;9:016003. doi: 10.1088/1478-3975/9/1/016003.
    1. Ashworth T.R. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust. Med. J. 1869;14:146.
    1. Hofman V., Ilie M., Long E., Selva E., Bonnetaud C., Molina T., Venissac N., Mouroux J., Vielh P., Hofman P. Detection of circulating tumor cells as a prognostic factor in patients undergoing radical surgery for non-small-cell lung carcinoma: Comparison of the efficacy of the CellSearch Assay™ and the isolation by size of epithelial tumor cell method. Int. J. Cancer. 2011;129:1651–1660. doi: 10.1002/ijc.25819.
    1. Müller V., Stahmann N., Riethdorf S., Rau T., Zabel T., Goetz A., Jänicke F., Pantel K. Circulating Tumor Cells in Breast Cancer: Correlation to Bone Marrow Micrometastases, Heterogeneous Response to Systemic Therapy and Low Proliferative Activity. Clin. Cancer Res. 2005;11:3678–3685. doi: 10.1158/1078-0432.CCR-04-2469.
    1. Onidani K., Shoji H., Kakizaki T., Yoshimoto S., Okaya S., Miura N., Sekikawa S., Furuta K., Lim C.T., Shibahara T., et al. Monitoring of cancer patients via next-generation sequencing of patient-derived circulating tumor cells and tumor DNA. Cancer Sci. 2019;110:2590–2599. doi: 10.1111/cas.14092.
    1. Scher H.I., Lu D., Schreiber N.A., Louw J., Graf R.P., Vargas H.A., Johnson A., Jendrisak A., Bambury R., Danila D., et al. Association of AR-V7 on Circulating Tumor Cells as a Treatment-Specific Biomarker With Outcomes and Survival in Castration-Resistant Prostate Cancer. JAMA Oncol. 2016;2:1441–1449. doi: 10.1001/jamaoncol.2016.1828.
    1. Gasch C., Bauernhofer T., Pichler M., Langer-Freitag S., Reeh M., Seifert A.M., Mauermann O., Izbicki J., Pantel K., Riethdorf S. Heterogeneity of Epidermal Growth Factor Receptor Status and Mutations of KRAS/PIK3CA in Circulating Tumor Cells of Patients with Colorectal Cancer. Clin. Chem. 2013;59:252–260. doi: 10.1373/clinchem.2012.188557.
    1. Malihi P.D., Morikado M., Welter L., Liu S.T., Miller E.T., Cadaneanu R.M., Knudsen B.S., Lewis M.S., Carlsson A., Velasco C.R., et al. Clonal diversity revealed by morphoproteomic and copy number profiles of single prostate cancer cells at diagnosis. Converg. Sci. Phys. Oncol. 2018;4:015003. doi: 10.1088/2057-1739/aaa00b.
    1. Thiele J.-A., Pitule P., Hicks J., Kuhn P. Single-Cell Analysis of Circulating Tumor Cells. Adv. Struct. Saf. Stud. 2019;1908:243–264. doi: 10.1007/978-1-4939-9004-7_17.
    1. Carlsson A., Nair V.S., Luttgen M.S., Keu K.V., Horng G., Vasanawala M., Kolatkar A., Jamali M., Iagaru A.H., Kuschner W., et al. Circulating tumor microemboli diagnostics for patients with non-small-cell lung cancer. J. Thorac. Oncol. 2014;9:1111–1119. doi: 10.1097/JTO.0000000000000235.
    1. Steeg P.S. Tumor metastasis: Mechanistic insights and clinical challenges. Nat. Med. 2006;12:895–904. doi: 10.1038/nm1469.
    1. Szczerba B.M., Castro-Giner F., Vetter M., Krol I., Gkountela S., Landin J., Scheidmann M.C., Donato C., Scherrer R., Singer J., et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature. 2019;566:553–557. doi: 10.1038/s41586-019-0915-y.
    1. Guibert N., Delaunay M., Lusque A., Boubekeur N., Rouquette I., Clermont E., Gouin S., Dormoy I., Favre G., Mazieres J., et al. PD-L1 expression in circulating tumor cells of advanced non-small cell lung cancer patients treated with nivolumab. Lung Cancer. 2018;120:108–112. doi: 10.1016/j.lungcan.2018.04.001.
    1. Boffa D.J., Graf R.P., Salazar M.C., Hoag J., Lu D., Krupa R., Louw J., Dugan L., Wang Y., Landers M., et al. Cellular Expression of PD-L1 in the Peripheral Blood of Lung Cancer Patients is Associated with Worse Survival. Cancer Epidemiol. Biomark. Prev. 2017;26:1139–1145. doi: 10.1158/1055-9965.EPI-17-0120.
    1. Mandel P., Metais P. Les acides nucleiques du plasma sanguine chez l’homme. Comptes Rendus Seances Soc. Biol. Fil. 1948;142:241–243.
    1. Jahr S., Hentze H., Englisch S., Hardt D., Fackelmayer F.O., Hesch R.D., Knippers R. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61:1659–1665.
    1. Anker P., Stroun M., Maurice P.A. Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system. Cancer Res. 1975;35:2375–2382.
    1. Wang W., Kong P., Ma G., Li L., Zhu J., Xia T., Xie H., Zhou W., Wang S. Characterization of the release and biological significance of cell-free DNA from breast cancer cell lines. Oncotarget. 2017;8:43180–43191. doi: 10.18632/oncotarget.17858.
    1. Stroun M., Lyautey J., Lederrey C., Olson-Sand A., Anker P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin. Chim. Acta. 2001;313:139–142. doi: 10.1016/S0009-8981(01)00665-9.
    1. Mouliere F., Thierry A. The importance of examining the proportion of circulating DNA originating from tumor, microenvironment and normal cells in colorectal cancer patients. Expert Opin. Biol. Ther. 2012;12:209–215. doi: 10.1517/14712598.2012.688023.
    1. Lo Y.M.D., Chan K.C.A., Sun H., Chen E.Z., Jiang P., Lun F.M.F., Zheng Y.W., Leung T.Y., Lau T.K., Cantor C., et al. Maternal Plasma DNA Sequencing Reveals the Genome-Wide Genetic and Mutational Profile of the Fetus. Sci. Transl. Med. 2010;2:61ra91. doi: 10.1126/scitranslmed.3001720.
    1. Fan H.C., Blumenfeld Y.J., Chitkara U., Hudgins L., Quake S.R. Analysis of the Size Distributions of Fetal and Maternal Cell-Free DNA by Paired-End Sequencing. Clin. Chem. 2010;56:1279–1286. doi: 10.1373/clinchem.2010.144188.
    1. Leon S.A., Shapiro B., Sklaroff D.M., Yaros M.J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37:646–650.
    1. Hao T.B., Shi W., Shen X.J., Qi J., Wu X.H., Wu Y., Tang Y.Y., Ju S.Q. Circulating cell-free DNA in serum as a biomarker for diagnosis and prognostic prediction of colorectal cancer. Br. J. Cancer. 2014;111:1482–1489. doi: 10.1038/bjc.2014.470.
    1. Mohan S., Ayub M., Rothwell D.G., Gulati S., Kilerci B., Hollebecque A., Leong H.S., Smith N.K., Sahoo S., Descamps T., et al. Analysis of circulating cell-free DNA identifies KRAS copy number gain and mutation as a novel prognostic marker in Pancreatic cancer. Sci. Rep. 2019;9:11610–11616. doi: 10.1038/s41598-019-47489-7.
    1. Janku F., Huang H.J., Claes B., Falchook G.S., Fu S., Hong D., Ramzanali N.M., Nitti G., Cabrilo G., Tsimberidou A.M., et al. BRAF Mutation Testing in Cell-Free DNA from the Plasma of Patients with Advanced Cancers Using a Rapid, Automated Molecular Diagnostics System. Mol. Cancer Ther. 2016;15:1397–1404. doi: 10.1158/1535-7163.MCT-15-0712.
    1. Hong D.S., Morris V.K., El Osta B., Sorokin A.V., Janku F., Fu S., Overman M.J., Piha-Paul S.A., Subbiah V., Kee B., et al. Phase IB Study of Vemurafenib in Combination with Irinotecan and Cetuximab in Patients with Metastatic Colorectal Cancer with BRAFV600E Mutation. Cancer Discov. 2016;6:1352–1365. doi: 10.1158/-16-0050.
    1. Allard W.J. Tumor Cells Circulate in the Peripheral Blood of All Major Carcinomas but not in Healthy Subjects or Patients With Nonmalignant Diseases. Clin. Cancer Res. 2004;10:6897–6904. doi: 10.1158/1078-0432.CCR-04-0378.
    1. Cohen S.J., Terstappen L.W., Punt C.J., Mitchell E.P., Fynan T.M., Li T., Matera J., Doyle G.V., Meropol N.J. Circulating endothelial cells (CEC) and circulating tumor cells (CTC) in patients (pts) with metastatic colorectal cancer (mCRC) J. Clin. Oncol. 2006;24:3531. doi: 10.1200/jco.2006.24.18_suppl.3531.
    1. De Bono J., Scher H.I., Montgomery R.B., Parker C., Miller M.C., Tissing H., Doyle G., Terstappen L.W., Pienta K.J., Raghavan D. Circulating Tumor Cells Predict Survival Benefit from Treatment in Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2008;14:6302–6309. doi: 10.1158/1078-0432.CCR-08-0872.
    1. Cristofanilli M., Budd G.T., Ellis M.J., Stopeck A., Matera J., Miller M.C., Reuben J.M., Doyle G.V., Allard W.J., Terstappen L.W.M.M., et al. Circulating Tumor Cells, Disease Progression, and Survival in Metastatic Breast Cancer. N. Engl. J. Med. 2004;351:781–791. doi: 10.1056/NEJMoa040766.
    1. Negin B.P., Cohen S.J. Circulating Tumor Cells in Colorectal Cancer: Past, Present, and Future Challenges. Curr. Treat. Options Oncol. 2010;11:1–13. doi: 10.1007/s11864-010-0115-3.
    1. Folkersma L.R., Gómez C.O., Manso L.S.J., De Castro S.V., Romo I.G., Lázaro M.V., De La Orden G.V., Fernández M.A., Rubio E.D., Moyano A.S., et al. Immunomagnetic quantification of circulating tumoral cells in patients with prostate cancer: Clinical and pathological correlation. Arch. Espanoles de Urol. 2010;63:23–31.
    1. Arrazubi V., Mata E., Antelo M.L., Tarifa A., Herrera J., Zazpe C., Teijeira L., Viudez A., Suárez J., Hernández I., et al. Circulating Tumor Cells in Patients Undergoing Resection of Colorectal Cancer Liver Metastases. Clinical Utility for Long-Term Outcome: A Prospective Trial. Ann. Surg. Oncol. 2019;26:2805–2811. doi: 10.1245/s10434-019-07503-8.
    1. Keomanee-Dizon K., Shishido S.N., Kuhn P. Methods in Molecular Biology. Volume 215. Springer Science and Business Media LLC; Cham, Switzerland: 2020. Circulating Tumor Cells: High-Throughput Imaging of CTCs and Bioinformatic Analysis; pp. 89–104.
    1. Gerdtsson A.S., Thiele J.-A., Shishido S.N., Zheng S., Schaffer R., Bethel K., Curley S., Lenz H.-J., Hanna D.L., Nieva J., et al. Single cell correlation analysis of liquid and solid biopsies in metastatic colorectal cancer. Oncotarget. 2019;10:7016–7030. doi: 10.18632/oncotarget.27271.
    1. Rodriguez-Lee M., Kolatkar A., McCormick M., Dago A.D., Kendall J., Carlsson N.A., Bethel K., Greenspan E.J., Hwang S.E., Waitman K.R., et al. Effect of Blood Collection Tube Type and Time to Processing on the Enumeration and High-Content Characterization of Circulating Tumor Cells Using the High-Definition Single-Cell Assay. Arch. Pathol. Lab. Med. 2018;142:198–207. doi: 10.5858/arpa.2016-0483-OA.
    1. Thiele J.-A., Bethel K., Kralickova M., Kuhn P. Circulating Tumor Cells: Fluid Surrogates of Solid Tumors. Annu. Rev. Pathol. Mech. Dis. 2017;12:419–447. doi: 10.1146/annurev-pathol-052016-100256.
    1. Scher H.I., Graf R.P., Schreiber N.A., Jayaram A., Winquist E., McLaughlin B., Lu D., Fleisher M., Orr S., Lowes L., et al. Assessment of the Validity of Nuclear-Localized Androgen Receptor Splice Variant 7 in Circulating Tumor Cells as a Predictive Biomarker for Castration-Resistant Prostate Cancer. JAMA Oncol. 2018;4:1179–1186. doi: 10.1001/jamaoncol.2018.1621.
    1. Vona G., Sabile A., Louha M., Sitruk V., Romana S.P., Schütze K., Capron F., Franco M., Pazzagli M., Vekemans M., et al. Isolation by Size of Epithelial Tumor Cells. Am. J. Pathol. 2000;156:57–63. doi: 10.1016/S0002-9440(10)64706-2.
    1. Chinen L., De Carvalho F.M., Rocha B.M.M., Aguiar C.M., Abdallah E.A., Campanha D., Mingues N.B., De Oliveira T.B., Maciel M.S., Cervantes G.M., et al. Cytokeratin-based CTC counting unrelated to clinical follow up. J. Thorac. Dis. 2013;5:593–599.
    1. Vona G., Beroud C., Benachi A., Quenette A., Bonnefont J., Romana S.P., Dumez Y., Lacour B., Paterlini-Bréchot P. Enrichment, Immunomorphological, and Genetic Characterization of Fetal Cells Circulating in Maternal Blood. Am. J. Pathol. 2002;160:51–58. doi: 10.1016/S0002-9440(10)64348-9.
    1. e Silva V.S., Chinen L., Abdallah E.A., Damascena A., Paludo J., Chojniak R., Dettino A., De Mello C.A.L., Alves V.S., Fanelli M.F. Early detection of poor outcome in patients with metastatic colorectal cancer: Tumor kinetics evaluated by circulating tumor cells. OncoTargets Ther. 2016;9:7503–7513. doi: 10.2147/OTT.S115268.
    1. Danila D.C., Samoila A., Patel C., Schreiber N., Herkal A., Anand A., Bastos D., Heller G., Fleisher M., Scher H.I. Clinical Validity of Detecting Circulating Tumor Cells by AdnaTest Assay Compared With Direct Detection of Tumor mRNA in Stabilized Whole Blood, as a Biomarker Predicting Overall Survival for Metastatic Castration-Resistant Prostate Cancer Patients. Cancer J. 2016;22:315–320. doi: 10.1097/PPO.0000000000000220.
    1. Todenhöfer T., Hennenlotter J., Feyerabend S., Aufderklamm S., Mischinger J., Kühs U., Gerber V., Fetisch J., Schilling D., Hauch S., et al. Preliminary experience on the use of the Adnatest® system for detection of circulating tumor cells in prostate cancer patients. Anticancer Res. 2012;32:3507–3513.
    1. Wu S., Liu S., Liu Z., Huang J., Pu X., Li J., Yang D., Deng H., Yang N., Xu J. Classification of Circulating Tumor Cells by Epithelial-Mesenchymal Transition Markers. PLoS ONE. 2015;10:e0123976. doi: 10.1371/journal.pone.0123976.
    1. Zhao R., Cai Z., Li S., Cheng Y., Gao H., Liu F., Wu S., Liu S., Dong Y., Zheng L., et al. Expression and clinical relevance of epithelial and mesenchymal markers in circulating tumor cells from colorectal cancer. Oncotarget. 2016;8:9293–9302. doi: 10.18632/oncotarget.14065.
    1. Gasiorowski L., Dyszkiewicz W., Zielinski P. In-vivo isolation of circulating tumor cells in non-small cell lung cancer patients by CellCollector. Neoplasma. 2017;64:938–944. doi: 10.4149/neo_2017_618.
    1. He Y., Shi J., Shi G., Xu X., Liu Q., Liu C., Gao Z., Bai J., Shan B. Using the New CellCollector to Capture Circulating Tumor Cells from Blood in Different Groups of Pulmonary Disease: A Cohort Study. Sci. Rep. 2017;7:9542. doi: 10.1038/s41598-017-09284-0.
    1. Tsai W.-S., You J.-F., Hung H.-Y., Hsieh P.-S., Hsieh B., Lenz H.-J., Idos G., Friedland S., Pan J.Y.-J., Shao H.-J., et al. Novel Circulating Tumor Cell Assay for Detection of Colorectal Adenomas and Cancer. Clin. Transl. Gastroenterol. 2019;10:e00088. doi: 10.14309/ctg.0000000000000088.
    1. Gupta P., Gulzar Z., Hsieh B., Lim A., Watson D., Mei R. Analytical validation of the CellMax platform for early detection of cancer by enumeration of rare circulating tumor cells. J. Circ. Biomark. 2019;8:1849454419899214. doi: 10.1177/1849454419899214.
    1. Jaeger B.A.S., Jueckstock J., Andergassen U., Salmen J., Schochter F., Fink V., Alunni-Fabbroni M., Rezai M., Beck T., Beckmann M.W., et al. Evaluation of Two Different Analytical Methods for Circulating Tumor Cell Detection in Peripheral Blood of Patients with Primary Breast Cancer. BioMed Res. Int. 2014;2014:491459. doi: 10.1155/2014/491459.
    1. Wang L., Balasubramanian P., Chen A.P., Kummar S., Evrard Y.A., Kinders R.J. Promise and limits of the CellSearch platform for evaluating pharmacodynamics in circulating tumor cells. Semin. Oncol. 2016;43:464–475. doi: 10.1053/j.seminoncol.2016.06.004.
    1. Bin Lim S., Yeo T., Di Lee W., Bhagat A.A.S., Tan S.J., Tan D.S.W., Lim W.-T., Lim C.T. Addressing cellular heterogeneity in tumor and circulation for refined prognostication. Proc. Natl. Acad. Sci. USA. 2019;116:17957–17962. doi: 10.1073/pnas.1907904116.
    1. Lee Y., Guan G., Bhagat A.A. ClearCell® FX, a label-free microfluidics technology for enrichment of viable circulating tumor cells. Cytom. Part A. 2018;93:1251–1254. doi: 10.1002/cyto.a.23507.
    1. Wu W., Zhang Z., Gao X.H., Shen Z., Jing Y., Lu H., Li H., Yang X., Cui X., Li Y., et al. Clinical significance of detecting circulating tumor cells in colorectal cancer using subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH) Oncotarget. 2017;8:21639–21649. doi: 10.18632/oncotarget.15452.
    1. Xu L., Jia S., Li H., Yu Y., Liu G., Wu Y., Liu X., Liu C., Zhou Y., Zhang Z., et al. Characterization of circulating tumor cells in newly diagnosed breast cancer. Oncol. Lett. 2017;15:2522–2528. doi: 10.3892/ol.2017.7540.
    1. D’Oronzo S., Lovero D., Palmirotta R., Stucci L.S., Tucci M., Felici C., Cascardi E., Giardina C., Cafforio P., Silvestris F. Dissection of major cancer gene variants in subsets of circulating tumor cells in advanced breast cancer. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-019-53660-x.
    1. Kondo Y., Hayashi K., Kawakami K., Miwa Y., Hayashi H., Yamamoto M. KRAS mutation analysis of single circulating tumor cells from patients with metastatic colorectal cancer. BMC Cancer. 2017;17:311. doi: 10.1186/s12885-017-3305-6.
    1. Liu Z., Fusi A., Klopocki E., Schmittel A., Tinhofer I., Nonnemacher A., Keilholz U. Negative enrichment by immunomagnetic nanobeads for unbiased characterization of circulating tumor cells from peripheral blood of cancer patients. J. Transl. Med. 2011;9:70. doi: 10.1186/1479-5876-9-70.
    1. Awasthi N.P., Kumari S., Neyaz A., Gupta S., Agarwal A., Singhal A., Husain N. EpCAM-based Flow Cytometric Detection of Circulating Tumor Cells in Gallbladder Carcinoma Cases. Asian Pac. J. Cancer Prev. 2017;18:3429–3437.
    1. Stott S.L., Hsu C.-H., Tsukrov D.I., Yu M., Miyamoto D.T., Waltman B.A., Rothenberg S.M., Shah A.M., Smas M.E., Korir G.K., et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. USA. 2010;107:18392–18397. doi: 10.1073/pnas.1012539107.
    1. Xue P., Ye K., Gao J., Wu Y., Guo J., Hui K.M., Kang Y. Isolation and elution of Hep3B circulating tumor cells using a dual-functional herringbone chip. Microfluid. Nanofluid. 2013;16:605–612. doi: 10.1007/s10404-013-1250-5.
    1. Castle J., Morris K., Pritchard S., Kirwan C.C. Challenges in enumeration of CTCs in breast cancer using techniques independent of cytokeratin expression. PLoS ONE. 2017;12:e0175647. doi: 10.1371/journal.pone.0175647.
    1. Farace F., Massard C., Vimond N., Drusch F., Jacques N., Billiot F., Laplanche A., Chauchereau A., Lacroix L., Planchard D., et al. A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. Br. J. Cancer. 2011;105:847–853. doi: 10.1038/bjc.2011.294.
    1. Cann G.M., Gulzar Z.G., Cooper S., Li R., Luo S., Tat M., Stuart S., Schroth G., Srinivas S., Ronaghi M., et al. mRNA-Seq of Single Prostate Cancer Circulating Tumor Cells Reveals Recapitulation of Gene Expression and Pathways Found in Prostate Cancer. PLoS ONE. 2012;7:e49144. doi: 10.1371/journal.pone.0049144.
    1. Deng G., Krishnakumar S., Powell A.A., Zhang H., Mindrinos M., Telli M.L., Davis R.W., Jeffrey S.S. Single cell mutational analysis of PIK3CA in circulating tumor cells and metastases in breast cancer reveals heterogeneity, discordance, and mutation persistence in cultured disseminated tumor cells from bone marrow. BMC Cancer. 2014;14:456. doi: 10.1186/1471-2407-14-456.
    1. Bobek V., Matkowski R., Gürlich R., Grabowski K., Szelachowska J., Lischke R., Schutzner J., Harustiak T., Pazdro A., Rzechonek A., et al. Cultivation of circulating tumor cells in esophageal cancer. Folia Histochem. Cytobiol. 2014;52:171–177. doi: 10.5603/FHC.2014.0020.
    1. Kolostova K., Matkowski R., Jędryka M., Soter K., Cegan M., Pinkas M., Jakabova A., Pavlasek J., Spicka J., Bobek V. The added value of circulating tumor cells examination in ovarian cancer staging. Am. J. Cancer Res. 2015;5:3363–3375.
    1. Gertler R., Rosenberg R., Fuehrer K., Dahm M., Nekarda H., Siewert J.R. Detection of circulating tumor cells in blood using an optimized density gradient centrifugation. Methods Mol. Biol. 2003;162:149–155. doi: 10.1007/978-3-642-59349-9_13.
    1. Kaifi J.T., Kunkel M., Das A., Harouaka R., Dicker D.T., Li G., Zhu J., Clawson G.A., Yang Z., Reed M.F., et al. Circulating tumor cell isolation during resection of colorectal cancer lung and liver metastases: A prospective trial with different detection techniques. Cancer Biol. Ther. 2015;16:699–708. doi: 10.1080/15384047.2015.1030556.
    1. Schwarzenbach H., Stoehlmacher J., Pantel K., Goekkurt E. Detection and Monitoring of Cell-Free DNA in Blood of Patients with Colorectal Cancer. Ann. N. Y. Acad. Sci. 2008;1137:190–196. doi: 10.1196/annals.1448.025.
    1. Czeiger D., Shaked G., Eini H., Vered I., Belochitski O., Avriel A., Ariad S., Douvdevani A. Measurement of Circulating Cell-Free DNA Levels by a New Simple Fluorescent Test in Patients With Primary Colorectal Cancer. Am. J. Clin. Pathol. 2011;135:264–270. doi: 10.1309/AJCP4RK2IHVKTTZV.
    1. Beaver J.A., Jelovac D., Balukrishna S., Cochran R.L., Croessmann S., Zabransky D.J., Wong H.Y., Toro P.V., Cidado J., Blair B.G., et al. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin. Cancer Res. 2014;20:2643–2650. doi: 10.1158/1078-0432.CCR-13-2933.
    1. Baslan T., Kendall J., Ward B., Cox H., Leotta A., Rodgers L., Riggs M., D’Italia S., Sun G., Yong M., et al. Optimizing sparse sequencing of single cells for highly multiplex copy number profiling. Genome Res. 2015;25:714–724. doi: 10.1101/gr.188060.114.
    1. Glenn T.C. Field guide to next?generation DNA sequencers. Mol. Ecol. Resour. 2011;11:759–769. doi: 10.1111/j.1755-0998.2011.03024.x.
    1. Molparia B., Oliveira G., Wagner J.L., Spencer E.G., Torkamani A. A feasibility study of colorectal cancer diagnosis via circulating tumor DNA derived CNV detection. PLoS ONE. 2018;13:e0196826. doi: 10.1371/journal.pone.0196826.
    1. Li J., Dittmar R., Xia S., Zhang H., Du M., Huang C., Druliner B.R., Boardman L., Wang L. Cell-free DNA copy number variations in plasma from colorectal cancer patients. Mol. Oncol. 2017;11:1099–1111. doi: 10.1002/1878-0261.12077.
    1. Birkenkamp-Demtröder K., Nordentoft I.K., Christensen E., Høyer S., Reinert T., Vang S., Borre M., Agerbæk M., Jensen J.B., Ørntoft T.F., et al. Genomic Alterations in Liquid Biopsies from Patients with Bladder Cancer. Eur. Urol. 2016;70:75–82. doi: 10.1016/j.eururo.2016.01.007.
    1. Zonta E., Garlan F., Pécuchet N., Perez-Toralla K., Caen O., Milbury C., Didelot A., Fabre E., Blons H., Laurent-Puig P., et al. Multiplex Detection of Rare Mutations by Picoliter Droplet Based Digital PCR: Sensitivity and Specificity Considerations. PLoS ONE. 2016;11:e0159094. doi: 10.1371/journal.pone.0159094.
    1. Dressman D., Yan H., Traverso G., Kinzler K.W., Vogelstein B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc. Natl. Acad. Sci. USA. 2003;100:8817–8822. doi: 10.1073/pnas.1133470100.
    1. Schmiegel W.H., Scott R.J., Dooley S., Lewis W., Meldrum C.J., Pockney P.G., Draganic B., Smith S., Hewitt C., Philimore H., et al. Blood-based detection ofRASmutations to guide anti-EGFR therapy in colorectal cancer patients: Concordance of results from circulating tumor DNA and tissue-basedRAStesting. Mol. Oncol. 2017;11:208–219. doi: 10.1002/1878-0261.12023.
    1. Taly V., Pekin D., Benhaim L., Kotsopoulos S.K., Le Corre D., Li X., Atochin I., Link D.R., Griffiths A.D., Pallier K., et al. Multiplex Picodroplet Digital PCR to Detect KRAS Mutations in Circulating DNA from the Plasma of Colorectal Cancer Patients. Clin. Chem. 2013;59:1722–1731. doi: 10.1373/clinchem.2013.206359.
    1. Zhu G., Ye X., Dong Z., Lu Y.C., Sun Y., Liu Y., McCormack R., Gu Y., Liu X. Highly Sensitive Droplet Digital PCR Method for Detection of EGFR-Activating Mutations in Plasma Cell–Free DNA from Patients with Advanced Non–Small Cell Lung Cancer. J. Mol. Diagn. 2015;17:265–272. doi: 10.1016/j.jmoldx.2015.01.004.
    1. Hughesman C.B., Lu X.J.D., Liu K.Y.P., Zhu Y., Towle R.M., Haynes C., Poh C.F. Detection of clinically relevant copy number alterations in oral cancer progression using multiplexed droplet digital PCR. Sci. Rep. 2017;7:11855. doi: 10.1038/s41598-017-11201-4.
    1. Gale D., Lawson A.R.J., Howarth K., Madi M., Durham B., Smalley S., Calaway J., Blais S., Jones G., Clark J., et al. Development of a highly sensitive liquid biopsy platform to detect clinically-relevant cancer mutations at low allele fractions in cell-free DNA. PLoS ONE. 2018;13:e0194630. doi: 10.1371/journal.pone.0194630.
    1. Forshew T., Murtaza M., Parkinson C., Gale D., Tsui D.W.Y., Kaper F., Dawson S.-J., Piskorz A.M., Jimenez-Linan M., Bentley D., et al. Noninvasive Identification and Monitoring of Cancer Mutations by Targeted Deep Sequencing of Plasma DNA. Sci. Transl. Med. 2012;4:136ra68. doi: 10.1126/scitranslmed.3003726.
    1. Kennedy S.R., Schmitt M.W., Fox E., Kohrn B.F., Salk J.J., Ahn E.H., Prindle M.J., Kuong K.J., Shen J.-C., Risques R.-A., et al. Detecting ultralow-frequency mutations by Duplex Sequencing. Nat. Protoc. 2014;9:2586–2606. doi: 10.1038/nprot.2014.170.
    1. Iwahashi N., Sakai K., Noguchi T., Yahata T., Matsukawa H., Toujima S., Nishio K., Ino K. Liquid biopsy-based comprehensive gene mutation profiling for gynecological cancer using CAncer Personalized Profiling by deep Sequencing. Sci. Rep. 2019;9:10426. doi: 10.1038/s41598-019-47030-w.
    1. Kinde I., Wu J., Papadopoulos N., Kinzler K.W., Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl. Acad. Sci. USA. 2011;108:9530–9535. doi: 10.1073/pnas.1105422108.
    1. Newman A.M., Bratman S.V., To J., Wynne J.F., Eclov N.C.W., Modlin L.A., Liu C.L., Neal J.W., Wakelee H.A., Merritt R.E., et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 2014;20:548–554. doi: 10.1038/nm.3519.
    1. Newman A.M., Lovejoy A.F., Klass D.M., Kurtz D.M., Chabon J.J., Scherer F., Stehr H., Liu C.L., Bratman S.V., Say C., et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat. Biotechnol. 2016;34:547–555. doi: 10.1038/nbt.3520.
    1. Fredebohm J., Mehnert D.H., Löber A.-K., Holtrup F., Van Rahden V., Angenendt P., Diehl F. Detection and Quantification of KIT Mutations in ctDNA by Plasma Safe-SeqS. Volume 924. Springer Science and Business Media LLC; Cham, Switzerland: 2016. pp. 187–189.
    1. Zheng H., Ladouceur M., Greenwood C.M.T., Richards J.B. Effect of Genome-Wide Genotyping and Reference Panels on Rare Variants Imputation. J. Genet. Genome. 2012;39:545–550. doi: 10.1016/j.jgg.2012.07.002.
    1. Devos T., Tetzner R., Model F., Weiss G., Schuster M., Distler J., Steiger K.V., Grützmann R., Pilarsky C., Habermann J.K., et al. Circulating Methylated SEPT9 DNA in Plasma Is a Biomarker for Colorectal Cancer. Clin. Chem. 2009;55:1337–1346. doi: 10.1373/clinchem.2008.115808.
    1. Warren J.D., Xiong W., Bunker A.M., Vaughn C.P., Furtado L.V., Owen W.E., Fang J., Samowitz W.S., Heichman K.A. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med. 2011;9:133. doi: 10.1186/1741-7015-9-133.
    1. Solassol J., Vendrell J., Märkl B., Haas C., Bellosillo B., Montagut C., Smith M., O’Sullivan B., D’Haene N., Le Mercier M., et al. Multi-Center Evaluation of the Fully Automated PCR-Based Idylla™ KRAS Mutation Assay for Rapid KRAS Mutation Status Determination on Formalin-Fixed Paraffin-Embedded Tissue of Human Colorectal Cancer. PLoS ONE. 2016;11:e0163444. doi: 10.1371/journal.pone.0163444.
    1. Zwaenepoel K., Duelund J.H., De Winne K., Maes V., Weyn C., Lambin S., Dendooven R., Broeckx G., Steiniche T., Pauwels P. Clinical Performance of the Idylla MSI Test for a Rapid Assessment of the DNA Microsatellite Status in Human Colorectal Cancer. J. Mol. Diagn. 2020;22:386–395. doi: 10.1016/j.jmoldx.2019.12.002.
    1. García-Foncillas J., Tabernero J., Élez E., Aranda E., Benavides M., Camps C., Jantus-Lewintre E., López R., Muinelo-Romay L., Montagut C., et al. Prospective multicenter real-world RAS mutation comparison between OncoBEAM-based liquid biopsy and tissue analysis in metastatic colorectal cancer. Br. J. Cancer. 2018;119:1464–1470. doi: 10.1038/s41416-018-0293-5.
    1. Wan N., Weinberg D., Liu T.-Y., Niehaus K., Delubac D., Kannan A., White B., Ariazi E.A., Bailey M., Bertin M., et al. Su1658–Machine Learning Enables Detection of Early-Stage Colorectal Cancer by Whole-Genome Sequencing of Plasma Cell-Free Dna. Gastroenterology. 2019;156:832. doi: 10.1016/S0016-5085(19)38396-9.
    1. Russo M., Siravegna G., Blaszkowsky L.S., Corti G., Crisafulli G., Ahronian L.G., Mussolin B., Kwak E.L., Buscarino M., Lazzari L., et al. Abstract 878: Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Exp. Mol. Ther. 2016;76:878. doi: 10.1158/1538-7445.am2016-878.
    1. Diehl F., Schmidt K., Choti M.A., Romans K., Goodman S., Li M., Thornton K., Agrawal N., Sokoll L., Szabo S.A., et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 2007;14:985–990. doi: 10.1038/nm.1789.
    1. Iwanicki-Caron I., Di Fiore F., Roque I., Astruc E., Stetiu M., Duclos A., Tougeron D., Saillard S., Thureau S., Benichou J., et al. Usefulness of the Serum Carcinoembryonic Antigen Kinetic for Chemotherapy Monitoring in Patients With Unresectable Metastasis of Colorectal Cancer. J. Clin. Oncol. 2008;26:3681–3686. doi: 10.1200/JCO.2007.15.0904.
    1. Li M., Li J.-Y., Zhao A.-L., He J.-S., Zhou L.-X., Li Y.-A., Gu J. Comparison of carcinoembryonic antigen prognostic value in serum and tumour tissue of patients with colorectal cancer. Color. Dis. 2009;11:276–281. doi: 10.1111/j.1463-1318.2008.01591.x.
    1. Yang K.M., Park I.J., Kim C.W., Roh S.A., Cho D.-H., Kim J.C. The prognostic significance and treatment modality for elevated pre- and postoperative serum CEA in colorectal cancer patients. Ann. Surg. Treat. Res. 2016;91:165–171. doi: 10.4174/astr.2016.91.4.165.
    1. Sun Z., Wang F., Zhou Q., Yang S., Sun X., Wang G., Li Z., Zhang Z., Song J., Liu J., et al. Pre-operative to post-operative serum carcinoembryonic antigen ratio is a prognostic indicator in colorectal cancer. Oncotarget. 2017;8:54672–54682. doi: 10.18632/oncotarget.17931.
    1. Imperiale T.F., Ransohoff D.F., Itzkowitz S.H., Brenner H., Werner S., Chen H., Senore C., Segnan N., Lee J.K., Terdiman J.P., et al. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 2014;371:187–188. doi: 10.1056/NEJMoa1311194.
    1. Song L., Jia J., Peng X., Xiao W., Li Y. The performance of the SEPT9 gene methylation assay and a comparison with other CRC screening tests: A meta-analysis. Sci. Rep. 2017;7:3032. doi: 10.1038/s41598-017-03321-8.
    1. Church T.R., Wandell M., Lofton-Day C., Mongin S.J., Burger M., Payne S.R., Castanos-Velez E., Blumenstein B.A., Rösch T., Osborn N., et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut. 2013;63:317–325. doi: 10.1136/gutjnl-2012-304149.
    1. Lee K.H., Kim J.S., Lee C.S., Kim J.-Y. KRAS discordance between primary and recurrent tumors after radical resection of colorectal cancers. J. Surg. Oncol. 2015;111:1059–1064. doi: 10.1002/jso.23936.
    1. Fabbri F., Carloni S., Zoli W., Ulivi P., Gallerani G., Fici P., Chiadini E., Passardi A., Frassineti G.L., Ragazzini A., et al. Detection and recovery of circulating colon cancer cells using a dielectrophoresis-based device: KRAS mutation status in pure CTCs. Cancer Lett. 2013;335:225–231. doi: 10.1016/j.canlet.2013.02.015.
    1. Russo M., Crisafulli G., Sogari A., Reilly N.M., Arena S., Lamba S., Bartolini A., Amodio V., Magrì A., Novara L., et al. Adaptive mutability of colorectal cancers in response to targeted therapies. Science. 2019;366:1473–1480. doi: 10.1126/science.aav4474.
    1. Bardelli A., Siena S. Molecular Mechanisms of Resistance to Cetuximab and Panitumumab in Colorectal Cancer. J. Clin. Oncol. 2010;28:1254–1261. doi: 10.1200/JCO.2009.24.6116.
    1. Luo H., Zhao Q., Wei W., Zheng L., Yi S., Li G., Wang W., Sheng H., Pu H., Mo H., et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci. Transl. Med. 2020;12:eaax7533. doi: 10.1126/scitranslmed.aax7533.
    1. Aravanis A.M., Lee M., Klausner R.D. Next-Generation Sequencing of Circulating Tumor DNA for Early Cancer Detection. Cell. 2017;168:571–574. doi: 10.1016/j.cell.2017.01.030.
    1. Cohen J.D., Li L., Wang Y., Thoburn C., Afsari B., Danilova L.V., Douville C., Javed A.A., Wong F., Mattox A., et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–930. doi: 10.1126/science.aar3247.
    1. Kolostova K., Matkowski R., Gürlich R., Grabowski K., Soter K., Lischke R., Schutzner J., Bobek V. Detection and cultivation of circulating tumor cells in gastric cancer. Cytotechnology. 2015;68:1095–1102. doi: 10.1007/s10616-015-9866-9.
    1. Eliášová P., Pinkas M., Kolostova K., Gürlich R., Bobek V. Circulating tumor cells in different stages of colorectal cancer. Folia Histochem. Cytobiol. 2017;55:1–5. doi: 10.5603/FHC.a2017.0005.
    1. De Macedo M.P., De Melo F.M., Ribeiro J.D.S.S., De Mello C.A.L., Begnami M.D.F.D.S., Soares F.A., Carraro D.M., Cunha I.W. RAS mutations vary between lesions in synchronous primary Colorectal Cancer: Testing only one lesion is not sufficient to guide anti-EGFR treatment decisions. Oncoscience. 2015;2:125. doi: 10.18632/oncoscience.118.
    1. Morelli M.P., Overman M.J., Dasari A., Kazmi S.M.A., Mazard T., Vilar E., Morris V.K., Lee M.S., Herron D., Eng C., et al. Characterizing the patterns of clonal selection in circulating tumor DNA from patients with colorectal cancer refractory to anti-EGFR treatment. Ann. Oncol. 2015;26:731–736. doi: 10.1093/annonc/mdv005.
    1. Vidal J., Muinelo L., Dalmases A., Jones F., Edelstein D., Iglesias M., Orrillo M., Abalo A., Rodríguez C., Brozos E., et al. Plasma ctDNA RAS mutation analysis for the diagnosis and treatment monitoring of metastatic colorectal cancer patients. Ann. Oncol. 2017;28:1325–1332. doi: 10.1093/annonc/mdx125.
    1. Thierry A., Pastor B., Jiang Z.-Q., Katsiampoura A.D., Parseghian C., Loree J., Overman M.J., Sanchez C., El Messaoudi S., Ychou M., et al. Circulating DNA Demonstrates Convergent Evolution and Common Resistance Mechanisms during Treatment of Colorectal Cancer. Clin. Cancer Res. 2017;23:4578–4591. doi: 10.1158/1078-0432.CCR-17-0232.
    1. Khan K., Cunningham D., Werner B., Vlachogiannis G., Spiteri I., Heide T., Mateos J.F., Vatsiou A., Lampis A., Damavandi M.D., et al. Longitudinal Liquid Biopsy and Mathematical Modeling of Clonal Evolution Forecast Time to Treatment Failure in the PROSPECT-C Phase II Colorectal Cancer Clinical Trial. Cancer Discov. 2018;8:1270–1285. doi: 10.1158/-17-0891.
    1. Klein-Scory S., Maslova M., Pohl M., Eilert-Micus C., Schroers R., Schmiegel W., Baraniskin A. Significance of Liquid Biopsy for Monitoring and Therapy Decision of Colorectal Cancer. Transl. Oncol. 2018;11:213–220. doi: 10.1016/j.tranon.2017.12.010.
    1. Bin Kuo Y., Chen J.-S., Fan C.-W., Li Y.-S., Chan E.-C. Comparison of KRAS mutation analysis of primary tumors and matched circulating cell-free DNA in plasmas of patients with colorectal cancer. Clin. Chim. Acta. 2014;433:284–289. doi: 10.1016/j.cca.2014.03.024.
    1. Bettegowda C., Sausen M., Leary R.J., Kinde I., Wang Y., Agrawal N., Bartlett B.R., Wang H., Luber B., Alani R.M., et al. Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies. Sci. Transl. Med. 2014;6:224ra24. doi: 10.1126/scitranslmed.3007094.
    1. Iwai T., Yamada T., Takahashi G., Takeda K., Koizumi M., Shinji S., Matsuda A., Yokoyama Y., Hara K., Ueda K., et al. Circulating cell-free long DNA fragments predict post-hepatectomy recurrence of colorectal liver metastases. Eur. J. Surg. Oncol. (EJSO) 2020;46:108–114. doi: 10.1016/j.ejso.2019.08.010.
    1. Rahbari N.N., Aigner M., Thorlund K., Mollberg N., Motschall E., Jensen K., Diener M.K., Büchler M.W., Koch M., Weitz J. Meta-analysis Shows That Detection of Circulating Tumor Cells Indicates Poor Prognosis in Patients With Colorectal Cancer. Gastroenterology. 2010;138:1714–1726.e13. doi: 10.1053/j.gastro.2010.01.008.
    1. Spindler K.-L.G., Appelt A.L., Pallisgaard N., Andersen R.F., Brandslund I., Jakobsen A. Cell-free DNA in healthy individuals, noncancerous disease and strong prognostic value in colorectal cancer. Int. J. Cancer. 2014;135:2984–2991. doi: 10.1002/ijc.28946.
    1. Tan Y., Wu H. The significant prognostic value of circulating tumor cells in colorectal cancer: A systematic review and meta-analysis. Curr. Probl. Cancer. 2018;42:95–106. doi: 10.1016/j.currproblcancer.2017.11.002.
    1. Spindler K.-L.G., Pallisgaard N., Andersen R.F., Brandslund I., Jakobsen A. Circulating Free DNA as Biomarker and Source for Mutation Detection in Metastatic Colorectal Cancer. PLoS ONE. 2015;10:e0108247. doi: 10.1371/journal.pone.0108247.
    1. Reinert T., Henriksen T.V., Christensen E., Sharma S., Salari R., Sethi H., Knudsen M., Nordentoft I.K., Wu H.-T., Tin A.S., et al. Analysis of Plasma Cell-Free DNA by Ultradeep Sequencing in Patients With Stages I to III Colorectal Cancer. JAMA Oncol. 2019;5:1124. doi: 10.1001/jamaoncol.2019.0528.
    1. Cohen S.J., Punt C.J., Iannotti N., Saidman B.H., Sabbath K.D., Gabrail N.Y., Picus J., Morse M., Mitchell E., Miller M.C., et al. Relationship of Circulating Tumor Cells to Tumor Response, Progression-Free Survival, and Overall Survival in Patients With Metastatic Colorectal Cancer. J. Clin. Oncol. 2008;26:3213–3221. doi: 10.1200/JCO.2007.15.8923.
    1. Connor A.A., McNamara K., Al-Sukhni E., Diskin J., Chan D., Ash C., Lowes L.E., Allan A., Zogopoulos G., Moulton C.-A., et al. Central, But Not Peripheral, Circulating Tumor Cells are Prognostic in Patients Undergoing Resection of Colorectal Cancer Liver Metastases. Ann. Surg. Oncol. 2015;23:2168–2175. doi: 10.1245/s10434-015-5038-6.
    1. Dizdar L., Flügen G., Van Dalum G., Honisch E., Neves R.P., Niederacher D., Neubauer H., Fehm T., Rehders A., Krieg A., et al. Detection of circulating tumor cells in colorectal cancer patients using the GILUPI CellCollector: Results from a prospective, single-center study. Mol. Oncol. 2019;13:1548–1558. doi: 10.1002/1878-0261.12507.
    1. Wong D., Moturi S., Angkachatchai V., Mueller R., DeSantis G., Boom D.V.D., Ehrich M. Optimizing blood collection, transport and storage conditions for cell free DNA increases access to prenatal testing. Clin. Biochem. 2013;46:1099–1104. doi: 10.1016/j.clinbiochem.2013.04.023.
    1. Grölz D., Hauch S., Schlumpberger M., Guenther K., Voss T., Sprenger-Haussels M., Oelmüller U. Liquid Biopsy Preservation Solutions for Standardized Pre-Analytical Workflows—Venous Whole Blood and Plasma. Curr. Pathobiol. Rep. 2018;6:275–286. doi: 10.1007/s40139-018-0180-z.
    1. Neumann M.H., Bender S., Krahn T., Schlange T. ctDNA and CTCs in Liquid Biopsy – Current Status and Where We Need to Progress. Comput. Struct. Biotechnol. J. 2018;16:190–195. doi: 10.1016/j.csbj.2018.05.002.
    1. Witzig T.E., Bossy B., Kimlinger T., Roche P.C., Ingle J.N., Grant C., Donohue J., Suman V.J., Harrington D., Torre-Bueno J., et al. Detection of circulating cytokeratin-positive cells in the blood of breast cancer patients using immunomagnetic enrichment and digital microscopy. Clin. Cancer Res. 2002;8:1085–1091.
    1. Hardingham J., Grover P., Winter M., Hewett P.J., Price T.J., Thierry B. Detection and Clinical Significance of Circulating Tumor Cells in Colorectal Cancer—20 Years of Progress. Mol. Med. 2015;21:S25–S31. doi: 10.2119/molmed.2015.00149.
    1. Yang J., Mani S.A., Donaher J.L., Ramaswamy S., Itzykson R.A., Come C., Savagner P., Gitelman I., Richardson A., Weinberg R.A. Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis. Cell. 2004;117:927–939. doi: 10.1016/j.cell.2004.06.006.
    1. Torga G., Pienta K.J. Patient-Paired Sample Congruence between 2 Commercial Liquid Biopsy Tests. JAMA Oncol. 2018;4:868–870. doi: 10.1001/jamaoncol.2017.4027.
    1. Vivancos A., Aranda E., Benavides M., Élez E., Gómez-España M.A., Toledano M., Alvarez M., Parrado M.R.C., García-Barberán V., Diaz-Rubio E. Comparison of the Clinical Sensitivity of the Idylla Platform and the OncoBEAM RAS CRC Assay for KRAS Mutation Detection in Liquid Biopsy Samples. Sci. Rep. 2019;9:8976. doi: 10.1038/s41598-019-45616-y.
    1. Scher H.I., Morris M.J., Larson S., Heller G. Validation and clinical utility of prostate cancer biomarkers. Nat. Rev. Clin. Oncol. 2013;10:225–234. doi: 10.1038/nrclinonc.2013.30.
    1. Pantel K., Hille C., Scher H.I. Circulating Tumor Cells in Prostate Cancer: From Discovery to Clinical Utility. Clin. Chem. 2019;65:87–99. doi: 10.1373/clinchem.2018.287102.
    1. Parkinson D.R., McCormack R.T., Keating S.M., Gutman S.I., Hamilton S.R., Mansfield E.A., Piper M.A., Deverka P., Frueh F.W., Jessup J.M., et al. Evidence of Clinical Utility: An Unmet Need in Molecular Diagnostics for Patients with Cancer. Clin. Cancer Res. 2014;20:1428–1444. doi: 10.1158/1078-0432.CCR-13-2961.
    1. Toledo R.A., Cubillo A., Vega E., Garralda E., Alvarez R., De La Varga L.U., Rodriguez-Pascual J., Sanchez G., Sarno F., Prieto S.H., et al. Clinical validation of prospective liquid biopsy monitoring in patients with wild-type RAS metastatic colorectal cancer treated with FOLFIRI-cetuximab. Oncotarget. 2016;8:35289–35300. doi: 10.18632/oncotarget.13311.
    1. Palmirotta R., Lovero D., Silvestris E., Felici C., Quaresmini D., Cafforio P., Silvestris F. Next-generation Sequencing (NGS) Analysis on Single Circulating Tumor Cells (CTCs) with No Need of Whole-genome Amplification (WGA) Cancer Genom.-Proteom. 2017;14:173–179. doi: 10.21873/cgp.20029.
    1. Ulz P., Heitzer E., Geigl J.B., Speicher M.R. Patient monitoring through liquid biopsies using circulating tumor DNA. Int. J. Cancer. 2017;141:887–896. doi: 10.1002/ijc.30759.
    1. Misale S., Di Nicolantonio F., Sartore-Bianchi A., Siena S., Bardelli A. Resistance to Anti-EGFR Therapy in Colorectal Cancer: From Heterogeneity to Convergent Evolution. Cancer Discov. 2014;4:1269–1280. doi: 10.1158/-14-0462.

Source: PubMed

3
订阅