A whey protein-based multi-ingredient nutritional supplement stimulates gains in lean body mass and strength in healthy older men: A randomized controlled trial

Kirsten E Bell, Tim Snijders, Michael Zulyniak, Dinesh Kumbhare, Gianni Parise, Adrian Chabowski, Stuart M Phillips, Kirsten E Bell, Tim Snijders, Michael Zulyniak, Dinesh Kumbhare, Gianni Parise, Adrian Chabowski, Stuart M Phillips

Abstract

Protein and other compounds can exert anabolic effects on skeletal muscle, particularly in conjunction with exercise. The objective of this study was to evaluate the efficacy of twice daily consumption of a protein-based, multi-ingredient nutritional supplement to increase strength and lean mass independent of, and in combination with, exercise in healthy older men. Forty-nine healthy older men (age: 73 ± 1 years [mean ± SEM]; BMI: 28.5 ± 1.5 kg/m2) were randomly allocated to 20 weeks of twice daily consumption of either a nutritional supplement (SUPP; n = 25; 30 g whey protein, 2.5 g creatine, 500 IU vitamin D, 400 mg calcium, and 1500 mg n-3 PUFA with 700 mg as eicosapentanoic acid and 445 mg as docosahexanoic acid); or a control (n = 24; CON; 22 g of maltodextrin). The study had two phases. Phase 1 was 6 weeks of SUPP or CON alone. Phase 2 was a 12 week continuation of the SUPP/CON but in combination with exercise: SUPP + EX or CON + EX. Isotonic strength (one repetition maximum [1RM]) and lean body mass (LBM) were the primary outcomes. In Phase 1 only the SUPP group gained strength (Σ1RM, SUPP: +14 ± 4 kg, CON: +3 ± 2 kg, P < 0.001) and lean mass (LBM, +1.2 ± 0.3 kg, CON: -0.1 ± 0.2 kg, P < 0.001). Although both groups gained strength during Phase 2, upon completion of the study upper body strength was greater in the SUPP group compared to the CON group (Σ upper body 1RM: 119 ± 4 vs. 109 ± 5 kg, P = 0.039). We conclude that twice daily consumption of a multi-ingredient nutritional supplement increased muscle strength and lean mass in older men. Increases in strength were enhanced further with exercise training.

Trial registration: ClinicalTrials.gov NCT02281331.

Conflict of interest statement

Competing Interests: The authors have read the journal's policy and the authors of this manuscript have the following competing interests: SMP reports receipt of competitive grant support, travel expenses, and honoraria for speaking received from the US National Dairy Council. No other conflicts of interest, financial or otherwise, are reported by any of the authors. This does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. CONSORT flow diagram illustrating the…
Fig 1. CONSORT flow diagram illustrating the movement of participants through the study, which was conducted between December 2014 and September 2016 (see S2 File. CONSORT Checklist).
Fig 2. Schematic of study design.
Fig 2. Schematic of study design.
Participants consumed either a multi-ingredient protein-based nutritional supplement (SUPP) or control (CON) drink for 20 weeks total (from weeks 0–19, inclusive), and completed a 12 week exercise training program (RET twice per week and HIIT once per week) between weeks 7–18. Testing occurred at weeks -1 (baseline), 6, and 19, and included the following assessments: isotonic strength (1RM), aerobic fitness (VO2peak), physical function, body composition (DXA), and a 75g OGTT. Phase 1: SUPP/CON took place between weeks 0–6, and Phase 2: SUPP/CON + EX took place between weeks 7–19. 1RM, one repetition maximum; DXA, dual-energy x-ray absorptiometry; HIIT, high-intensity interval training; OGTT, oral glucose tolerance test; RET, resistance exercise training; VO2peak, peak oxygen uptake.
Fig 3
Fig 3
Isotonic strength expressed as the sum of all (A), upper body (B), and lower body (C) 1RMs. Boxes (SUPP: grey; CON: white) represent interquartile (25th to 75th percentile) ranges, with the horizontal lines indicating the median. Whiskers represent the maximal and minimal values, and the cross indicates the mean. Data were analyzed using a linear mixed model with group (SUPP or CON), time (prior to study entry, and weeks 6 and 19), and the group-by-time interaction as fixed factors; subject as a random factor; and baseline values as covariates. We observed significant group-by-time interactions for the sum of all 1RMs (P = 0.039) and for the sum of upper body 1RMs (P = 0.015), and a main effect of time for the sum of lower body 1RMs (P < 0.001). Dissimilar letters denote changes over time within a given treatment group (SUPP or CON). * Indicates a significant (P < 0.05) difference from the CON group at that time. 1RM, one repetition maximum; SUPP, supplement group (n = 25); CON, control group (n = 24).
Fig 4
Fig 4
Whole body (A), appendicular (B), and leg (C) lean mass over the course of the study. Boxes (SUPP: grey; CON: white) represent interquartile (25th to 75th percentile) ranges, with the horizontal lines indicating the medians. Whiskers represent the maximal and minimal values, and the crosses indicate the means. Data was analyzed using a linear mixed model with group (SUPP or CON), time (prior to study entry, and weeks 6 and 19), and the group-by-time interaction as fixed factors; subject as a random factor; and baseline values as covariates. We observed significant group-by-time interactions for whole body (P < 0.01), appendicular (P = 0.021), and leg lean mass (P = 0.015). Dissimilar letters denote changes over time within a given treatment group (SUPP or CON). SUPP, supplement group (n = 25); CON, control group (n = 24).

References

    1. Curtis E, Litwic A, Cooper C, Dennison E. Determinants of Muscle and Bone Aging. J Cell Physiol. 2015;230(11):2618–25. doi:
    1. Gale CR, Martyn CN, Cooper C, Sayer AA. Grip strength, body composition, and mortality. Int J Epidemiol. 2007;36(1):228–35. doi:
    1. Sirven N, Rapp T, Coretti S, Ruggeri M, Cicchetti A. Preventing mobility disability in Europe: a health economics perspective from the SPRINTT study. Aging Clin Exp Res. 2017.
    1. Cermak NM, Res PT, de Groot LC, Saris WH, van Loon LJ. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012;96(6):1454–64. doi:
    1. Devries MC, Phillips SM. Creatine supplementation during resistance training in older adults-a meta-analysis. Med Sci Sports Exerc. 2014;46(6):1194–203. doi:
    1. Cornelissen V, Fagard R. Effect of resistance training on resting blood pressure: a meta-analysis of randomized controlled trials. Journal of Hypertension. 2005;23(2):251–9.
    1. Strasser B, Schobersberger W. Resistance Training in the Treatment of the Metabolic Syndrome. Sports medicine (Auckland, NZ). 2010;40(5):397–415.
    1. Vincent K, Braith R, Feldman R, Kallas H. Improved Cardiorespiratory Endurance Following 6 Months of Resistance Exercise in Elderly Men and Women. JAMA. 2002;162(6):673–8.
    1. de Labra C, Guimaraes-Pinheiro C, Maseda A, Lorenzo T, Millan-Calenti JC. Effects of physical exercise interventions in frail older adults: a systematic review of randomized controlled trials. BMC Geriatr. 2015;15:154 doi:
    1. Tomlinson PB, Joseph C, Angioi M. Effects of vitamin D supplementation on upper and lower body muscle strength levels in healthy individuals. A systematic review with meta-analysis. J Sci Med Sport. 2015;18(5):575–80. doi:
    1. Smith GI, Julliand S, Reeds DN, Sinacore DR, Klein S, Mittendorfer B. Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am J Clin Nutr. 2015;102(1):115–22. doi:
    1. Bell KE, Seguin C, Parise G, Baker SK, Phillips SM. Day-to-Day Changes in Muscle Protein Synthesis in Recovery From Resistance, Aerobic, and High-Intensity Interval Exercise in Older Men. The journals of gerontology Series A, Biological sciences and medical sciences. 2015;70(8):1024–9. doi:
    1. Hwang CL, Yoo JK, Kim HK, Hwang MH, Handberg EM, Petersen JW, et al. Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults. Exp Gerontol. 2016;82:112–9. doi:
    1. Storen O, Helgerud J, Saebo M, Stoa EM, Bratland-Sanda S, Unhjem RJ, et al. The Impact of Age on the VO2max Response to High-Intensity Interval Training. Med Sci Sports Exerc. 2016.
    1. Verreijen AM, Verlaan S, Engberink MF, Swinkels S, de Vogel-van den Bosch J, Weijs PJ. A high whey protein-, leucine-, and vitamin D-enriched supplement preserves muscle mass during intentional weight loss in obese older adults: a double-blind randomized controlled trial. Am J Clin Nutr. 2015;101(2):279–86. doi:
    1. Rondanelli M, Klersy C, Terracol G, Talluri J, Maugeri R, Guido D, et al. Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. Am J Clin Nutr. 2016;103(3):830–40. doi:
    1. Canadian Society for Physiology. PAR-Q & YOU 2002 [Available from: .
    1. Mayhew JL, Prinster JL, Ware JS, Zimmer DL, Arabas JR, Bemben MG. Muscular endurance repetitions to predict bench press strength in men of different training levels. J Sports Med Phys Fitness. 1995;35(2):108–13.
    1. Jones CJ, Rikli RE, Beam WC. A 30-s Chair-Stand Test as a Measure of Lower Body Strength in Community-Residing Older Adults. Res Q Exerc Sport. 1999;70(2):113–9. doi:
    1. Allison DB, Paultre F, Maggio C, Mezzitis N, Pi-Sunyer FX. The use of areas under curves in diabetes research. Diabetes Care. 1995;18(2):245–50.
    1. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing. Diabetes Care. 1999;22(9):1462–70.
    1. Dirks ML, Wall BT, van de Valk B, Holloway TM, Holloway GP, Chabows A, et al. One week of bedrest leads to substantial muscle atrophy and reduces whole-body insulin resistance in the absence of skeletal muscle lipid accumulation. Diabetes. 2016;65:2862–75. doi:
    1. Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509.
    1. Mahadevappa VG, Holub BJ. Quantitative loss of individual eicosapentaenoyl-relative to arachidonoyl-containing phospholipids in thrombin-stimulated human platelets. J Lipid Res. 1987;28(11):1275–80.
    1. Bradley NS, Heigenhauser GJ, Roy BD, Staples EM, Inglis JG, LeBlanc PJ, et al. The acute effects of differential dietary fatty acids on human skeletal muscle pyruvate dehydrogenase activity. J Appl Physiol (1985). 2008;104(1):1–9.
    1. Nawrocki A, Gorski J. Effect of plasma free fatty acid concentration on the content and composition of the free fatty acid fraction in rat skeletal muscles. Horm Metab Res. 2004;36(9):601–6. doi:
    1. Elobeid MA, Padilla MA, McVie T, Thomas O, Brock DW, Musser B, et al. Missing data in randomized clinical trials for weight loss: scope of the problem, state of the field, and performance of statistical methods. PLoS One. 2009;4(8):e6624 doi:
    1. Thomas DK, Quinn MA, Saunders DH, Greig CA. Protein Supplementation Does Not Significantly Augment the Effects of Resistance Exercise Training in Older Adults: A Systematic Review. J Am Med Dir Assoc. 2016;17(10):959 e1–9.
    1. Naclerio F, Larumbe-Zabala E. Effects of Whey Protein Alone or as Part of a Multi-ingredient Formulation on Strength, Fat-Free Mass, or Lean Body Mass in Resistance-Trained Individuals: A Meta-analysis. Sports medicine (Auckland, NZ). 2016;46(1):125–37.
    1. Komar B, Schwingshackl L, Hoffman G. Effects of leucine-rich protein supplements on anthropometric parameter and muscle strength in the elderly: a systematic review and meta-analysis. J Nutr Health Aging. 2015;19(4):437–46. doi:
    1. Xu ZR, Tan ZJ, Zhang Q, Gui QF, Yang YM. Clinical effectiveness of protein and amino acid supplementation on building muscle mass in elderly people: a meta-analysis. PLoS One. 2014;9(9):e109141 doi:
    1. Moon A, Heywood L, Rutherford S, Cobbold C. Creatine supplementation: can it improve quality of life in the elderly without associated resistance training? Curr Aging Sci. 2013;6(3):251–7.
    1. Dawson-Hughes B. Serum 25-hydroxyvitamin D and muscle atrophy in the elderly. Proc Nutr Soc. 2012;71(1):46–9. doi:
    1. Weaver CM, Alexander DD, Boushey CJ, Dawson-Hughes B, Lappe JM, LeBoff MS, et al. Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos Int. 2016;27(1):367–76. doi:
    1. Da Boit M, Sibson R, Sivasubramaniam S, Meakin JR, Greig CA, Aspden RM, et al. Sex differences in the effect of fish oil supplementation on the adaptive response to resistance exercise training in older people: a randomized control trial. Am J Clin Nutr. 2016.
    1. Smith GI, Atherton P, Villareal DT, Frimel TN, Rankin D, Rennie MJ, et al. Differences in muscle protein synthesis and anabolic signaling in the postabsorptive state and in response to food in 65–80 year old men and women. PLoS One. 2008;3(3):e1875 doi:
    1. Dhesi JK, Jackson SH, Bearne LM, Moniz C, Hurley MV, Swift CG, et al. Vitamin D supplementation improves neuromuscular function in older people who fall. Age Ageing. 2004;33(6):589–95. doi:
    1. Gotshalk LA, Volek JS, Staron RS, Denegar CR, Hagerman FC, Kraemer WJ. Creatine supplementation improves muscular performance in older men. Med Sci Sports Exerc. 2002;34(3):537–43.
    1. Bermon S, Venembre P, Sachet C, Valour S, Dolisi C. Effects of creatine monohydrate ingestion in sedentary and weight-trained older adults. Acta Physiol Scand 1998;164:147–55. doi:
    1. Zhu K, Kerr DA, Meng X, Devine A, Solah V, Binns CW, et al. Two-Year Whey Protein Supplementation Did Not Enhance Muscle Mass and Physical Function in Well-Nourished Healthy Older Postmenopausal Women. J Nutr. 2015;145(11):2520–6. doi:
    1. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, et al. The loss of skeletal muscle strength, mass, and quality in older adults: The Health, Aging and Body Composition Study. The journals of gerontology Series A, Biological sciences and medical sciences. 2006;61A(10):1059–64.
    1. Fiatarone Singh MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ. High-intensity strength training in nonagenarians. JAMA. 1990;263(22):3029–34.
    1. Frontera WR, Meredith CN, O'Reilly KP, Knuttgen HG, Evans WJ. Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol. 1988;64:1038–44.
    1. Peterson MD, Sen A, Gordon PM. Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sports Exerc. 2011;43(2):249–58. doi:
    1. Kikuchi N, Yoshida S, Okuyama M, Nakazato K. The Effect of High-Intensity Interval Cycling Sprints Subsequent to Arm-Curl Exercise on Upper-Body Muscle Strength and Hypertrophy. J Strength Cond Res. 2016;30(8):2318–23. doi:
    1. Rantanen T, Avlund K, Suominen H, Schroll M, Frändin K, Pertti E. Muscle strength as a predictor of onset of ADL dependence in people aged 75 years. Aging and Clinical and Experimental Research. 2002;14(3 Suppl):10–5.
    1. Latham NK, Anderson CS, Lee A, Bennett DA, Moseley A, Cameron ID. A Randomized Controlled Trial Of Quadriceps Resistance Exercise And Vitamin D In Frail Older People: The Frailty Interventions Trial In Elderly Subjects (FITNESS). J Am Geriatr Soc. 2003;51:291–9.
    1. Verdijk LB, Jonkers RA, Gleeson BG, Beelen M, Meijer K, Savelberg HH, et al. Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy after resistance training in elderly men. Am J Clin Nutr. 2009;89(2):608–16. doi:
    1. Candow DG, Little JP, Chilibeck PD, Abeysekara S, Zello GA, Kazachkov M, et al. Low-dose creatine combined with protein during resistance training in older men. Med Sci Sports Exerc. 2008;40(9):1645–52. doi:
    1. Rodacki CL, Rodacki AL, Pereira G, Naliwaiko K, Coelho I, Pequito D, et al. Fish-oil supplementation enhances the effects of strength training in elderly women. Am J Clin Nutr. 2012;95(2):428–36. doi:
    1. Finger D, Reistenbach Goltz F, Umplerre D, Meyer E, Telles Rosa LH, Dornelles Schneider C. Effects Of Protein Supplementation In Older Adults Undergoing Resistance Training: A Systematic Review And Meta-Analysis. Sports medicine (Auckland, NZ). 2015;45:245–55.
    1. Aguiar AF, Januario RS, Junior RP, Gerage AM, Pina FL, do Nascimento MA, et al. Long-term creatine supplementation improves muscular performance during resistance training in older women. Eur J Appl Physiol. 2013;113(4):987–96. doi:
    1. Wall BT, Dirks ML, van Loon LJC. Skeletal muscle atrophy during short-term disuse: Implications for age-related sarcopenia. Ageing Research Reviews. 2013;12(4):898–906. doi:
    1. Bell KE, Von Allmen MT, Devries MC, Phillips SM. Muscle Disuse as a Pivotal Problem in Sarcopenia-Related Muscle Loss and Dysfunction. J Frailty Aging. 2016;5(1):33–41. doi:
    1. Fuller JC, Baier S, Flakoll P, Nissen S, Abumrad NN, Rathmacher JA. Vitamin D Status Affects Strength Gains in Older Adults Supplemented with a Combination of Beta-Hydroxy-Beta-Methylbutyrate, Arginine, and Lysine: A Cohort Study. Journal of Parenteral and Enteral Nutrition 2011;35(6):757–62. doi:
    1. Verlaan S, Maier AB, Bauer JM, Bautmans I, Brandt K, Donini LM, et al. Sufficient levels of 25-hydroxyvitamin D and protein intake required to increase muscle mass in sarcopenic older adults—The PROVIDE study. Clin Nutr. 2017.
    1. Farsijani S, Morais JA, Payette H, Gaudreau P, Shatenstein B, Gray-Donald K, et al. Relation between mealtime distribution of protein intake and lean mass loss in free-living older adults of the NuAge study. Am J Clin Nutr. 2016;104(3):694–703. doi:
    1. Murphy CH, Oikawa SY, Phillips SM. Dietary Protein to Maintain Muscle Mass in Aging: A Case for Per-meal Protein Recommendations. J Frailty Aging. 2016;5(1):49–58. doi:

Source: PubMed

3
订阅