Differential DNA methylation marks and gene comethylation of COPD in African-Americans with COPD exacerbations

Robert Busch, Weiliang Qiu, Jessica Lasky-Su, Jarrett Morrow, Gerard Criner, Dawn DeMeo, Robert Busch, Weiliang Qiu, Jessica Lasky-Su, Jarrett Morrow, Gerard Criner, Dawn DeMeo

Abstract

Background: Chronic obstructive pulmonary disease (COPD) is the third-leading cause of death worldwide. Identifying COPD-associated DNA methylation marks in African-Americans may contribute to our understanding of racial disparities in COPD susceptibility. We determined differentially methylated genes and co-methylation network modules associated with COPD in African-Americans recruited during exacerbations of COPD and smoking controls from the Pennsylvania Study of Chronic Obstructive Pulmonary Exacerbations (PA-SCOPE) cohort.

Methods: We assessed DNA methylation from whole blood samples in 362 African-American smokers in the PA-SCOPE cohort using the Illumina Infinium HumanMethylation27 BeadChip Array. Final analysis included 19302 CpG probes annotated to the nearest gene transcript after quality control. We tested methylation associations with COPD case-control status using mixed linear models. Weighted gene comethylation networks were constructed using weighted gene coexpression network analysis (WGCNA) and network modules were analyzed for association with COPD.

Results: There were five differentially methylated CpG probes significantly associated with COPD among African-Americans at an FDR less than 5 %, and seven additional probes that approached significance at an FDR less than 10 %. The top ranked gene association was MAML1, which has been shown to affect NOTCH-dependent angiogenesis in murine lung. Network modeling yielded the "yellow" and "blue" comethylation modules which were significantly associated with COPD (p-value 4 × 10-10 and 4 × 10-9, respectively). The yellow module was enriched for gene sets related to inflammatory pathways known to be relevant to COPD. The blue module contained the top ranked genes in the concurrent differential methylation analysis (FXYD1/LGI4, gene significance p-value 1.2 × 10-26; MAML1, p-value 2.0 × 10-26; CD72, p-value 2.1 × 10-25; and LPO, p-value 7.2 × 10-25), and was significantly associated with lung development processes in Gene Ontology gene-set enrichment analysis.

Conclusion: We identified 12 differentially methylated CpG sites associated with COPD that mapped to biologically plausible genes. Network module comethylation patterns have identified candidate genes that may be contributing to racial differences in COPD susceptibility and severity. COPD-associated comethylation modules contained genes previously associated with lung disease and inflammation and recapitulated known COPD-associated genes. The genes implicated by differential methylation and WGCNA analysis may provide mechanistic targets contributing to COPD susceptibility, exacerbations, and outcomes among African-Americans.

Trial registration: Trial Registration: NCT00774176 , Registry: ClinicalTrials.gov, URL: www.clinicaltrials.gov , Date of Enrollment of First Participant: June 2004, Date Registered: 04 January 2008 (retrospectively registered).

Keywords: Chronic obstructive pulmonary disease; DNA methylation; Microarray; Smoking; Weighted gene coexpression network analysis.

Figures

Fig. 1
Fig. 1
Subject- and Probe-Level Quality Control Chart. Quality control of the PA-SCOPE methylation dataset included Probe-level controls and Subject-level quality controls (see Methods for details). Final analysis included 93 COPD cases and 269 smoking controls. SNP-Under-Probe refers to probes containing a CpG within 5 base pairs upstream or downstream of a known genomic SNP. Repeat-Under-Probe refers to probes that mapped to genomic repeat regions
Fig. 2
Fig. 2
Differentially Methylated CpG Probes Associated with COPD. Differential methylation analysis revealed 12 CpG sites in 12 genes significantly associated with COPD with an FDR-corrected p-value less than 0.10. Difference in mean percent methylation represents the difference in mean methylation between COPD cases and smoking controls. The y-axis represents the negative log of the association p-value from linear mixed models adjusted for age, gender, pack years of smoking, assay batch, and cell type. The name of the nearest gene is included with each of the top five CpG results
Fig. 3
Fig. 3
Manhattan Plot of Differential Methylation Analysis Results. Differential methylation analysis results presented by chromosomal location (x-axis). The y-axis represents the negative log of the association p-value from linear mixed models adjusted for age, gender, pack years of smoking, assay batch, and cell type. The name of the nearest gene is included with each of the top five CpG results
Fig. 4
Fig. 4
WCGNA Module Trait Relationship Heatmap. Heatmap showing comethylation module correlation with phenotypic trait and associated p-value for these correlations within PA-SCOPE. Positive or negative correlation magnitude with COPD is presented with p-value for the correlation with COPD in parenthesis. The yellow and blue modules were both significantly associated with COPD affection status, labeled “COPD”

References

    1. Kochanek KD, Murphy SL, Xu J. Deaths: Final Data for 2011. National vital statistics reports : from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System. 2015;63:1–120.
    1. Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. American journal of respiratory and critical care medicine. 2013;187:347–365. doi: 10.1164/rccm.201204-0596PP.
    1. Trends in COPD (Chronic Bronchitis and Emphysema): Morbidity and Mortality []. Accessed 6 Mar 2016.
    1. Dransfield MT, Bailey WC. COPD: racial disparities in susceptibility, treatment, and outcomes. Clinics in chest medicine. 2006;27:463–471. doi: 10.1016/j.ccm.2006.04.005.
    1. Foreman MG, Zhang L, Murphy J, Hansel NN, Make B, Hokanson JE, Washko G, Regan EA, Crapo JD, Silverman EK, DeMeo DL. Early-onset chronic obstructive pulmonary disease is associated with female sex, maternal factors, and African American race in the COPDGene Study. American journal of respiratory and critical care medicine. 2011;184:414–420. doi: 10.1164/rccm.201011-1928OC.
    1. State of Lung Disease in Diverse Communities: 2010 []. Accessed 6 Mar 2016.
    1. Han MK, Curran-Everett D, Dransfield MT, Criner GJ, Zhang L, Murphy JR, Hansel NN, DeMeo DL, Hanania NA, Regan EA, et al. Racial differences in quality of life in patients with COPD. Chest. 2011;140:1169–1176. doi: 10.1378/chest.10-2869.
    1. Manichaikul A, Hoffman EA, Smolonska J, Gao W, Cho MH, Baumhauer H, Budoff M, Austin JH, Washko GR, Carr JJ, et al. Genome-wide study of percent emphysema on computed tomography in the general population. The Multi-Ethnic Study of Atherosclerosis Lung/SNP Health Association Resource Study. American journal of respiratory and critical care medicine. 2014;189:408–418. doi: 10.1164/rccm.201306-1061OC.
    1. Sun YV, Smith AK, Conneely KN, Chang Q, Li W, Lazarus A, Smith JA, Almli LM, Binder EB, Klengel T, et al. Epigenomic association analysis identifies smoking-related DNA methylation sites in African Americans. Human genetics. 2013;132:1027–1037. doi: 10.1007/s00439-013-1311-6.
    1. Fraser HB, Lam LL, Neumann SM, Kobor MS. Population-specificity of human DNA methylation. Genome biology. 2012;13:R8. doi: 10.1186/gb-2012-13-2-r8.
    1. Barfield RT, Almli LM, Kilaru V, Smith AK, Mercer KB, Duncan R, Klengel T, Mehta D, Binder EB, Epstein MP, et al. Accounting for population stratification in DNA methylation studies. Genetic epidemiology. 2014;38:231–241. doi: 10.1002/gepi.21789.
    1. Bjornsson HT, Fallin MD, Feinberg AP. An integrated epigenetic and genetic approach to common human disease. Trends in genetics : TIG. 2004;20:350–358. doi: 10.1016/j.tig.2004.06.009.
    1. Breitling LP, Yang R, Korn B, Burwinkel B, Brenner H. Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. American journal of human genetics. 2011;88:450–457. doi: 10.1016/j.ajhg.2011.03.003.
    1. Sakao S, Tatsumi K. The importance of epigenetics in the development of chronic obstructive pulmonary disease. Respirology. 2011;16:1056–1063. doi: 10.1111/j.1440-1843.2011.02032.x.
    1. Qiu W, Baccarelli A, Carey VJ, Boutaoui N, Bacherman H, Klanderman B, Rennard S, Agusti A, Anderson W, Lomas DA, DeMeo DL. Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function. American journal of respiratory and critical care medicine. 2012;185:373–381. doi: 10.1164/rccm.201108-1382OC.
    1. Wan ES, Qiu W, Baccarelli A, Carey VJ, Bacherman H, Rennard SI, Agusti A, Anderson W, Lomas DA, Demeo DL. Cigarette smoking behaviors and time since quitting are associated with differential DNA methylation across the human genome. Human molecular genetics. 2012;21:3073–3082. doi: 10.1093/hmg/dds135.
    1. Zeilinger S, Kuhnel B, Klopp N, Baurecht H, Kleinschmidt A, Gieger C, Weidinger S, Lattka E, Adamski J, Peters A, et al. Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PloS one. 2013;8:e63812. doi: 10.1371/journal.pone.0063812.
    1. Saccone NL, Wang JC, Breslau N, Johnson EO, Hatsukami D, Saccone SF, Grucza RA, Sun L, Duan W, Budde J, et al. The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans. Cancer research. 2009;69:6848–6856. doi: 10.1158/0008-5472.CAN-09-0786.
    1. Zhu G, Warren L, Aponte J, Gulsvik A, Bakke P, Anderson WH, Lomas DA, Silverman EK, Pillai SG. The SERPINE2 gene is associated with chronic obstructive pulmonary disease in two large populations. American journal of respiratory and critical care medicine. 2007;176:167–173. doi: 10.1164/rccm.200611-1723OC.
    1. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 2008;9:559. doi: 10.1186/1471-2105-9-559.
    1. Rickabaugh TM, Baxter RM, Sehl M, Sinsheimer JS, Hultin PM, Hultin LE, Quach A, Martinez-Maza O, Horvath S, Vilain E, Jamieson BD. Acceleration of age-associated methylation patterns in HIV-1-infected adults. PloS one. 2015;10:e0119201. doi: 10.1371/journal.pone.0119201.
    1. Wan ES, Qiu W, Baccarelli A, Carey VJ, Bacherman H, Rennard SI, Agusti A, Anderson WH, Lomas DA, DeMeo DL. Systemic steroid exposure is associated with differential methylation in chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine. 2012;186:1248–1255. doi: 10.1164/rccm.201207-1280OC.
    1. GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–60.
    1. Wu X, Sun X, Chen C, Bai C, Wang X. Dynamic gene expressions of peripheral blood mononuclear cells in patients with acute exacerbation of chronic obstructive pulmonary disease: a preliminary study. Critical care. 2014;18:508. doi: 10.1186/s13054-014-0508-y.
    1. Wijkstrom-Frei C, El-Chemaly S, Ali-Rachedi R, Gerson C, Cobas MA, Forteza R, Salathe M, Conner GE. Lactoperoxidase and human airway host defense. American journal of respiratory cell and molecular biology. 2003;29:206–212. doi: 10.1165/rcmb.2002-0152OC.
    1. Jin N, Kolliputi N, Gou D, Weng T, Liu L. A novel function of ionotropic gamma-aminobutyric acid receptors involving alveolar fluid homeostasis. The Journal of biological chemistry. 2006;281:36012–36020. doi: 10.1074/jbc.M606895200.
    1. Rowan-Carroll A, Halappanavar S, Williams A, Somers CM, Yauk CL. Mice exposed in situ to urban air pollution exhibit pulmonary alterations in gene expression in the lipid droplet synthesis pathways. Environmental and molecular mutagenesis. 2013;54:240–249. doi: 10.1002/em.21768.
    1. Igartua C, Myers RA, Mathias RA, Pino-Yanes M, Eng C, Graves PE, Levin AM, Del-Rio-Navarro BE, Jackson DJ, Livne OE, et al. Ethnic-specific associations of rare and low-frequency DNA sequence variants with asthma. Nature communications. 2015;6:5965. doi: 10.1038/ncomms6965.
    1. TCNG: The Cancer Network Galaxy []. Accessed 6 Mar 2016.
    1. Baughman RP, Culver DA. Sarcoidosis. Clinics in chest medicine. 2015;36:xv. doi: 10.1016/j.ccm.2015.09.001.
    1. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research. 2000;28:27–30. doi: 10.1093/nar/28.1.27.
    1. Kumar A, Das S, Agrawal A, Mukhopadhyay I, Ghosh B. Genetic association of key Th1/Th2 pathway candidate genes, IRF2, IL6, IFNGR2, STAT4 and IL4RA, with atopic asthma in the Indian population. Journal of human genetics. 2015;60:443–448. doi: 10.1038/jhg.2015.45.
    1. Li X, Zhang X, Leathers R, Makino A, Huang C, Parsa P, Macias J, Yuan JX, Jamieson SW, Thistlethwaite PA. Notch3 signaling promotes the development of pulmonary arterial hypertension. Nature medicine. 2009;15:1289–1297. doi: 10.1038/nm.2021.
    1. Wei C, Qiu J, Zhou Y, Xue Y, Hu J, Ouyang K, Banerjee I, Zhang C, Chen B, Li H, et al. Repression of the Central Splicing Regulator RBFox2 Is Functionally Linked to Pressure Overload-Induced Heart Failure. Cell Rep. 2015. doi:10.1016/j.celrep.2015.02.013. [Epub ahead of print].
    1. Smith AK, Kilaru V, Kocak M, Almli LM, Mercer KB, Ressler KJ, Tylavsky FA, Conneely KN. Methylation quantitative trait loci (meQTLs) are consistently detected across ancestry, developmental stage, and tissue type. BMC genomics. 2014;15:145. doi: 10.1186/1471-2164-15-145.
    1. Carrell RW, Jeppsson JO, Laurell CB, Brennan SO, Owen MC, Vaughan L, Boswell DR. Structure and variation of human alpha 1-antitrypsin. Nature. 1982;298:329–334. doi: 10.1038/298329a0.
    1. Bhat TA, Panzica L, Kalathil SG, Thanavala Y. Immune Dysfunction in Patients with Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society. 2015;12(Suppl 2):S169–175.
    1. Retamales I, Elliott WM, Meshi B, Coxson HO, Pare PD, Sciurba FC, Rogers RM, Hayashi S, Hogg JC. Amplification of inflammation in emphysema and its association with latent adenoviral infection. American journal of respiratory and critical care medicine. 2001;164:469–473. doi: 10.1164/ajrccm.164.3.2007149.
    1. Lommatzsch M, Bratke K, Knappe T, Bier A, Dreschler K, Kuepper M, Stoll P, Julius P, Virchow JC. Acute effects of tobacco smoke on human airway dendritic cells in vivo. The European respiratory journal. 2010;35:1130–1136. doi: 10.1183/09031936.00090109.
    1. Hoenderdos K, Condliffe A. The neutrophil in chronic obstructive pulmonary disease. American journal of respiratory cell and molecular biology. 2013;48:531–539. doi: 10.1165/rcmb.2012-0492TR.
    1. Brightling CE, Monteiro W, Ward R, Parker D, Morgan MD, Wardlaw AJ, Pavord ID. Sputum eosinophilia and short-term response to prednisolone in chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2000;356:1480–1485. doi: 10.1016/S0140-6736(00)02872-5.
    1. Brightling CE, McKenna S, Hargadon B, Birring S, Green R, Siva R, Berry M, Parker D, Monteiro W, Pavord ID, Bradding P. Sputum eosinophilia and the short term response to inhaled mometasone in chronic obstructive pulmonary disease. Thorax. 2005;60:193–198. doi: 10.1136/thx.2004.032516.
    1. Culley FJ. Natural killer cells in infection and inflammation of the lung. Immunology. 2009;128:151–163. doi: 10.1111/j.1365-2567.2009.03167.x.
    1. Wedzicha JA. Mechanisms of Chronic Obstructive Pulmonary Disease Exacerbations. Annals of the American Thoracic Society. 2015;12(Suppl 2):S157–159. doi: 10.1513/AnnalsATS.201507-427AW.
    1. Papi A, Bellettato CM, Braccioni F, Romagnoli M, Casolari P, Caramori G, Fabbri LM, Johnston SL. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. American journal of respiratory and critical care medicine. 2006;173:1114–1121. doi: 10.1164/rccm.200506-859OC.
    1. Guida F, Sandanger TM, Castagne R, Campanella G, Polidoro S, Palli D, Krogh V, Tumino R, Sacerdote C, Panico S, et al. Dynamics of smoking-induced genome-wide methylation changes with time since smoking cessation. Human molecular genetics. 2015;24:2349–2359. doi: 10.1093/hmg/ddu751.
    1. Van Schayck CP, Loozen JM, Wagena E, Akkermans RP, Wesseling GJ. Detecting patients at a high risk of developing chronic obstructive pulmonary disease in general practice: cross sectional case finding study. BMJ. 2002;324:1370. doi: 10.1136/bmj.324.7350.1370.
    1. Takahashi T, Ichinose M, Inoue H, Shirato K, Hattori T, Takishima T. Underdiagnosis and undertreatment of COPD in primary care settings. Respirology. 2003;8:504–508. doi: 10.1046/j.1440-1843.2003.00501.x.
    1. Lange P, Celli B, Agusti A, Boje Jensen G, Divo M, Faner R, Guerra S, Marott JL, Martinez FD, Martinez-Camblor P, et al. Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease. The New England journal of medicine. 2015;373:111–122. doi: 10.1056/NEJMoa1411532.
    1. Bibikova M, Le J, Barnes B, Saedinia-Melnyk S, Zhou L, Shen R, Gunderson KL. Genome-wide DNA methylation profiling using Infinium(R) assay. Epigenomics. 2009;1:177–200. doi: 10.2217/epi.09.14.
    1. Kotton DN, Morrisey EE. Lung regeneration: mechanisms, applications and emerging stem cell populations. Nature medicine. 2014;20:822–832. doi: 10.1038/nm.3642.
    1. Gao X, Jia M, Zhang Y, Breitling LP, Brenner H. DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies. Clinical epigenetics. 2015;7:113. doi: 10.1186/s13148-015-0148-3.
    1. Li L, Choi JY, Lee KM, Sung H, Park SK, Oze I, Pan KF, You WC, Chen YX, Fang JY, et al. DNA methylation in peripheral blood: a potential biomarker for cancer molecular epidemiology. Journal of epidemiology/Japan Epidemiological Association. 2012;22:384–394. doi: 10.2188/jea.JE20120003.
    1. Anthonisen NR, Manfreda J, Warren CP, Hershfield ES, Harding GK, Nelson NA. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Annals of internal medicine. 1987;106:196–204. doi: 10.7326/0003-4819-106-2-196.
    1. Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, Lin SM. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC bioinformatics. 2010;11:587. doi: 10.1186/1471-2105-11-587.
    1. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for StatisticalComputing; 2016. .
    1. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nature methods. 2015;12:115–121. doi: 10.1038/nmeth.3252.
    1. Pan Du SD, Sven Bilke, Tim Triche, Jr., Moiz Bootwalla: methylumi: Handle Illumina methylation data. 2.16 edition; 2014.
    1. Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ. Software for computing and annotating genomic ranges. PLoS computational biology. 2013;9:e1003118. doi: 10.1371/journal.pcbi.1003118.
    1. Pidsley R, CC YW, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC genomics. 2013;14:293. doi: 10.1186/1471-2164-14-293.
    1. Chen YA, Choufani S, Ferreira JC, Grafodatskaya D, Butcher DT, Weksberg R. Sequence overlap between autosomal and sex-linked probes on the Illumina HumanMethylation27 microarray. Genomics. 2011;97:214–222. doi: 10.1016/j.ygeno.2010.12.004.
    1. Bock C, Tomazou EM, Brinkman AB, Muller F, Simmer F, Gu H, Jager N, Gnirke A, Stunnenberg HG, Meissner A. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nature biotechnology. 2010;28:1106–1114. doi: 10.1038/nbt.1681.
    1. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC bioinformatics. 2012;13:86. doi: 10.1186/1471-2105-13-86.
    1. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids research. 2015;43:e47. doi: 10.1093/nar/gkv007.
    1. Repapi E, Sayers I, Wain LV, Burton PR, Johnson T, Obeidat M, Zhao JH, Ramasamy A, Zhai G, Vitart V, et al. Genome-wide association study identifies five loci associated with lung function. Nature genetics. 2010;42:36–44. doi: 10.1038/ng.501.
    1. Soler Artigas M, Loth DW, Wain LV, Gharib SA, Obeidat M, Tang W, Zhai G, Zhao JH, Smith AV, Huffman JE, et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nature genetics. 2011;43:1082–1090. doi: 10.1038/ng.941.
    1. Hancock DB, Eijgelsheim M, Wilk JB, Gharib SA, Loehr LR, Marciante KD, Franceschini N, van Durme YM, Chen TH, Barr RG, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nature genetics. 2010;42:45–52. doi: 10.1038/ng.500.
    1. Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC, Feng S, Hersh CP, Bakke P, Gulsvik A, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS genetics. 2009;5:e1000421. doi: 10.1371/journal.pgen.1000421.
    1. Celedon JC, Lange C, Raby BA, Litonjua AA, Palmer LJ, DeMeo DL, Reilly JJ, Kwiatkowski DJ, Chapman HA, Laird N, et al. The transforming growth factor-beta1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD) Human molecular genetics. 2004;13:1649–1656. doi: 10.1093/hmg/ddh171.
    1. DeMeo DL, Mariani T, Bhattacharya S, Srisuma S, Lange C, Litonjua A, Bueno R, Pillai SG, Lomas DA, Sparrow D, et al. Integration of genomic and genetic approaches implicates IREB2 as a COPD susceptibility gene. American journal of human genetics. 2009;85:493–502. doi: 10.1016/j.ajhg.2009.09.004.
    1. Cho MH, Boutaoui N, Klanderman BJ, Sylvia JS, Ziniti JP, Hersh CP, DeMeo DL, Hunninghake GM, Litonjua AA, Sparrow D, et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nature genetics. 2010;42:200–202. doi: 10.1038/ng.535.
    1. Cho MH, Castaldi PJ, Wan ES, Siedlinski M, Hersh CP, Demeo DL, Himes BE, Sylvia JS, Klanderman BJ, Ziniti JP, et al. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Human molecular genetics. 2012;21:947–957. doi: 10.1093/hmg/ddr524.
    1. Cho MH, McDonald ML, Zhou X, Mattheisen M, Castaldi PJ, Hersh CP, Demeo DL, Sylvia JS, Ziniti J, Laird NM, et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. The Lancet Respiratory medicine. 2014;2:214–225. doi: 10.1016/S2213-2600(14)70002-5.
    1. Kamburov A, Pentchev K, Galicka H, Wierling C, Lehrach H, Herwig R. ConsensusPathDB: toward a more complete picture of cell biology. Nucleic acids research. 2011;39:D712–717. doi: 10.1093/nar/gkq1156.

Source: PubMed

3
订阅