Effects of a pulmonary rehabilitation program on physical capacity, peripheral muscle function and inflammatory markers in asthmatic children and adolescents: study protocol for a randomized controlled trial

Mariana Mazzuca Reimberg, Rejane Agnelo Silva Castro, Jessyca Pachi Rodrigues Selman, Aline Santos Meneses, Fabiano Politti, Márcia Carvalho Mallozi, Gustavo Falbo Wandalsen, Dirceu Solé, Kátia De Angelis, Simone Dal Corso, Fernanda Cordoba Lanza, Mariana Mazzuca Reimberg, Rejane Agnelo Silva Castro, Jessyca Pachi Rodrigues Selman, Aline Santos Meneses, Fabiano Politti, Márcia Carvalho Mallozi, Gustavo Falbo Wandalsen, Dirceu Solé, Kátia De Angelis, Simone Dal Corso, Fernanda Cordoba Lanza

Abstract

Background: Individuals with chronic lung disease are more susceptible to present reduction in exercise tolerance and muscles strength not only due to pulmonary limitations but also due systemic repercussions of the pulmonary disease. The aim of this study is to assess the physical capacity, peripheral muscle function, physical activity in daily life, and the inflammatory markers in children and adolescents with asthma after pulmonary rehabilitation program.

Method: This is a study protocol of randomized controlled trial in asthmatic patients between 6 to 18 years old. The assessments will be conducted in three different days and will be performed at the beginning and at the end of the protocol. First visit: quality of life questionnaire, asthma control questionnaire, pre- and post-bronchodilator spirometry (400 μcg salbutamol), inflammatory assessment (blood collection), and cardiopulmonary exercise test on a cycle ergometer to determine aerobic capacity. Second visit: assessment of strength and endurance of the quadriceps femoris and biceps brachii muscles with concomitant electromyography to assess peripheral muscle strength. Third visit: incremental shuttle walk test (ISWT) and accelerometer to evaluate functional capacity and physical activity in daily life during 7 days. Then, the volunteers will be randomized to receive pulmonary rehabilitation program (intervention group) or chest physiotherapy + stretching exercises (control group). Both groups will have a supervised session, twice a week, each session will have 60 minutes duration, with minimum interval of 24 hours, for a period of 8 weeks. Intervention group: aerobic training (35 minutes) intensity between 60 to 80 % of the maximum workload of cardiopulmonary exercise testing or of ISWT; strength muscle training will be applied to the quadriceps femoris, biceps brachii and deltoid muscles (intensity: 40 to 70 % of maximal repetition, 3 x 8 repetition); finally the oral high-frequency oscillation device (Flutter®) will be used for 5 minutes. The control group: oral high-frequency oscillation device (Flutter®) for 10 minutes followed by the stretching of upper and lower limbs for 40 minutes. It is expected to observe the improvement in aerobic capacity, physical activity in daily life, muscle strength and quality of life of patients in the intervention group, and reduction in inflammatory markers.

Clinical trial number: NCT02383069. Data of registration: 03/03/2015.

Figures

Fig 1
Fig 1
Flow of patients through the study

References

    1. GINA. Global Strategy for Asthma Management and Prevention 2014 (revision). Available from:
    1. Vogiatzis I, Zakynthinos G, Andrianopoulos V. Mechanisms of physical activity limitation in chronic lung diseases. Pulm Med. 2012;2012:634–761. doi: 10.1155/2012/634761.
    1. Wagner PD. Determinants of maximal oxygen transport and utilization. Annu Rev Physiol. 1996;58:21–50. doi: 10.1146/annurev.ph.58.030196.000321.
    1. Task Force ERS, Palange P, Ward SA, Carlsen KH, Casaburi R, Gallagher CG, et al. Recommendations on the use of exercise testing in clinical practice. Eur Respir J. 2007;29(1):185–209.
    1. Welsh L, Roberts RG, Kemp JG. Fitness and physical activity in children with asthma. Sports Med. 2004;34(13):861–70. doi: 10.2165/00007256-200434130-00001.
    1. Villa F, Castro AP, Pastorino AC, Santarém JM, Martins MA, Jacob CM, et al. Aerobic capacity and skeletal muscle function in children with asthma. Arch Dis Child. 2011;96(6):554–9. doi: 10.1136/adc.2011.212431.
    1. Lochte L, Angermann M, Larsson B. Cardiorespiratory fitness of asthmatic children and validation of predicted aerobic capacity. Clin Respir J. 2009;3(1):42–50. doi: 10.1111/j.1752-699X.2008.00107.x.
    1. Lochte L. Predicted aerobic capacity of asthmatic children: a research study from clinical origin. Pulm Med. 2012;2012:8546–52. doi: 10.1155/2012/854652.
    1. Moraes EZ, Trevisan ME, Baldisserotto Sde V, Portela LO. Children and adolescents with mild intermittent or mild persistent asthma: aerobic capacity between attacks. J Bras Pneumol. 2012;38(4):438–44. doi: 10.1590/S1806-37132012000400005.
    1. Singh SJ, Morgan MD, Scott S, Walters D, Hardman AE. Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax. 1992;47(12):1019–24. doi: 10.1136/thx.47.12.1019.
    1. Mendes FA, Lunardi A, Silva RA, Cukier A, Stelmach R, Martins MA, et al. Association between maximal aerobic capacity and psychosocial factors in adults with moderate-to-severe asthma. J Asthma. 2013;50(6):595–9. doi: 10.3109/02770903.2013.786724.
    1. Ringbaek T, Martinez G, Brondum E, Thogersen J, Morgan M, Lange P. Shuttle walking test as predictor of survival in chronic obstructive pulmonary disease patients enrolled in a rehabilitation program. J Cardiopulm Rehabil Prev. 2010;30(6):409–14. doi: 10.1097/HCR.0b013e3181e1736b.
    1. Areias V, Ferreira D, Martins A, Matias I, Negrinho F, Rodrigues F. Evolution of functional capacity and health status two years after a pulmonary rehabilitation programme. Rev Port Pneumol. 2012;18(5):217–25. doi: 10.1016/j.rppneu.2012.02.010.
    1. Ahmaidi SB, Varray AL, Savy-Pacaux AM, Prefaut CG. Cardiorespiratory fitness evaluation by the shuttle test in asthmatic subjects during aerobic training. Chest. 1993;103(4):1135–41. doi: 10.1378/chest.103.4.1135.
    1. de Meer K, Gulmans VA, van Der Laag J. Peripheral muscle weakness and exercise capacity in children with cystic fibrosis. Am J Respir Crit Care Med. 1999;159(3):748–54. doi: 10.1164/ajrccm.159.3.9802112.
    1. Neder JA, Nery LE, Silva AC, Cabral AL, Fernandes AL. Short-term effects of aerobic training in the clinical management of moderate to severe asthma in children. Thorax. 1999;54(3):202–6. doi: 10.1136/thx.54.3.202.
    1. Matsumoto I, Araki H, Tsuda K, Odajima H, Nishima S, Higaki Y, et al. Effects of swimming training on aerobic capacity and exercise induced bronchoconstriction in children with bronchial asthma. Thorax. 1999;54(3):196–201. doi: 10.1136/thx.54.3.196.
    1. Counil FP, Varray A, Matecki S, Beurey A, Marchal P, Voisin M, et al. Training of aerobic and anaerobic fitness in children with asthma. J Pediatr. 2003;142(2):179–84. doi: 10.1067/mpd.2003.83.
    1. Basaran S, Guler-Uysal F, Ergen N, Seydaoglu G, Bingol-Karakoç G, Ufuk AD. Effects of physical exercise on quality of life, exercise capacity and pulmonary function in children with asthma. J Rehabil Med. 2006;38(2):130–5. doi: 10.1080/16501970500476142.
    1. Fanelli A, Cabral AL, Neder JA, Martins MA, Carvalho CR. Exercise training on disease control and quality of life in asthmatic children. Med Sci Sports Exerc. 2007;39(9):1474–80. doi: 10.1249/mss.0b013e3180d099ad.
    1. Moreira A, Delgado L, Haahtela T, Fonseca J, Moreira P, Lopes C, et al. Physical training does not increase allergic inflammation in asthmatic children. Eur Respir J. 2008;32(6):1570–5. doi: 10.1183/09031936.00171707.
    1. Wang JS, Hung WP. The effects of a swimming intervention for children with asthma. Respirology. 2009;14(6):838–42. doi: 10.1111/j.1440-1843.2009.01567.x.
    1. Wicher IB, Ribeiro MA, Marmo DB, Santos CI, Toro AA, Mendes RT, et al. Effects of swimming on spirometric parameters and bronchial hyperresponsiveness in children and adolescents with moderate persistent atopic asthma. J Pediatr (Rio J). 2010;86(5):384–90. doi: 10.1590/S0021-75572010000500006.
    1. Wanrooij VH, Willeboordse M, Dompeling E, van de Kant KD. Exercise training in children with asthma: a systematic review. Br J Sports Med. 2014;48(13):1024–31. doi: 10.1136/bjsports-2012-091347.
    1. La Escala C, Naspitz CK. SolÈ D “Adaptação e validação do Pediatric Asthma Quality of Life Questionnaire (PAQLQ-A) em crianças e adolescentes brasileiros com asma”. J Pediatr (Rio J). 2005;81(1):54–60. doi: 10.2223/JPED.1283.
    1. Thomas M, Kay S, Pike J, Williams A, Carranza Rosenzweig JR, Hillyer EV, et al. The Asthma Control TestTM (ACT) as a predictor of GINA guideline-defined asthma control: analysis of a multinational cross-sectional survey. Prim Care Resp J. 2009;18(1):41–9.
    1. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. ATS/ERS Task Force. Series Standardisation of lung. function testing. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–38. doi: 10.1183/09031936.05.00034805.
    1. Sociedade Brasileira de Pneumologia Espirometria. Diretrizes para testes de função pulmonar. J Pneumol. 2002;28(suppl 3):1–82.
    1. Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Whipp BJ. Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol. 1983;55(5):1558–64.
    1. Godfrey S, Davies CT, Wozniak E. Cardio-respiratory response to exercise in normal children. Clin Sci. 1971;40(5):419–31. doi: 10.1042/cs0400419.
    1. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81. doi: 10.1249/00005768-198205000-00012.
    1. Hänggi JM, Phillips LR, Rowlands AV. Validation of the GTX3 ActiGraph in children and comparison with the GT1M ActiGraph. J Sci Med Sport. 2013;16(1):40–4. doi: 10.1016/j.jsams.2012.05.012.
    1. Mathur S, Eng JJ, MacIntyre DL. Realiability of surface EMG during sustained contractions of quadriceps. J Electromyogr Kinesiol. 2005;15(1):102–10. doi: 10.1016/j.jelekin.2004.06.003.
    1. Hermens HJ, Freriks B. Development of recommendations for SEMG sensors and sensor placement procedures. J Eletromyogr Kinesiol. 2000;10(5):361–74. doi: 10.1016/S1050-6411(00)00027-4.
    1. Howard TD, Koppelman GH, Xu J, Zheng SL, Postma DS, Meyers DA, et al. Gene-gene interaction in asthma: IL4RA and IL13 in a Dutch population with asthma. Am J Hum Genet. 2002;70(1):230–6. doi: 10.1086/338242.
    1. Levin OS, Polunina AG, Demyanova MA, Isaev FV. Steroid myopathy in patients with chronic respiratory diseases. J Neurol Sci. 2014;338(1–2):96–101. doi: 10.1016/j.jns.2013.12.023.
    1. Corder K, Ekelund U, Steele RM, Wareham NJ, Brage S. Assessment of physical activity in youth. J Appl Physiol. 2008;105(3):977–87. doi: 10.1152/japplphysiol.00094.2008.
    1. Pitta F, Takaki MY, Oliveira NH, Sant'anna TJ, Fontana AD, Kovelis D, et al. Relationship between pulmonary function and physical activity in daily life in patients with COPD. Respir Med. 2008;102(8):1203–7. doi: 10.1016/j.rmed.2008.03.004.
    1. Sousa AW, Cabral AL, Martins MA, Carvalho CR. Daily physical activity in asthmatic children with distinct severities. J Asthma. 2014;51(5):493–7. doi: 10.3109/02770903.2014.888571.
    1. Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C. ATS/ERS Task Force on Pulmonary Rehabilitation et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013;188(8):e13–64. doi: 10.1164/rccm.201309-1634ST.
    1. Eichenberger PA, Diener SN, Kofmehl R, Spengler CM. Effects of exercise training on airway hyperreactivity in asthma: a systematic review and meta-analysis. Sports Med. 2013;43(11):1157–70. doi: 10.1007/s40279-013-0077-2.
    1. Andrade LB, Britto MC, Lucena-Silva N, Gomes RG, Figueroa JN. The efficacy of aerobic training in improving the inflammatory component of asthmatic children. Randomized trial Respir Med. 2014;108(10):1438–45.

Source: PubMed

3
订阅