Weight loss required by the severely obese to achieve clinically important differences in health-related quality of life: two-year prospective cohort study

Lindsey M Warkentin, Sumit R Majumdar, Jeffrey A Johnson, Calypse B Agborsangaya, Christian F Rueda-Clausen, Arya M Sharma, Scott W Klarenbach, Shahzeer Karmali, Daniel W Birch, Raj S Padwal, Lindsey M Warkentin, Sumit R Majumdar, Jeffrey A Johnson, Calypse B Agborsangaya, Christian F Rueda-Clausen, Arya M Sharma, Scott W Klarenbach, Shahzeer Karmali, Daniel W Birch, Raj S Padwal

Abstract

Background: Guidelines and experts describe 5% to 10% reductions in body weight as 'clinically important'; however, it is not clear if 5% to 10% weight reductions correspond to clinically important improvements in health-related quality of life (HRQL). Our objective was to calculate the amount of weight loss required to attain established minimal clinically important differences (MCIDs) in HRQL, measured using three validated instruments.

Methods: Data from the Alberta Population-based Prospective Evaluation of Quality of Life Outcomes and Economic Impact of Bariatric Surgery (APPLES) study, a population-based, prospective Canadian cohort including 150 wait-listed, 200 medically managed and 150 surgically treated patients were examined. Two-year changes in weight and HRQL measures (Short-Form (SF)-12 physical (PCS; MCID = 5) and mental (MCS; MCID = 5) component summary score, EQ-5D Index (MCID = 0.03) and Visual Analog Scale (VAS; MCID = 10), Impact of Weight on Quality of Life (IWQOL)-Lite total score (MCID = 12)) were calculated. Separate multivariable linear regression models were constructed within medically and surgically treated patients to determine if weight changes achieved HRQL MCIDs. Pooled analysis in all 500 patients was performed to estimate the weight reductions required to achieve the pre-defined MCID for each HRQL instrument.

Results: Mean age was 43.7 (SD 9.6) years, 88% were women, 92% were white, and mean initial body mass index was 47.9 (SD 8.1) kg/m2. In surgically treated patients (two-year weight loss = 16%), HRQL MCIDs were reached for all instruments except the SF-12 MCS. In medically managed patients (two-year weight loss = 3%), MCIDs were attained in the EQ-index but not the other instruments. In all patients, percent weight reductions to achieve MCIDs were: 23% (95% confidence interval (CI): 17.5, 32.5) for PCS, 25% (17.5, 40.2) for MCS, 9% (6.2, 15.0) for EQ-Index, 23% (17.3, 36.1) for EQ-VAS, and 17% (14.1, 20.4) for IWQOL-Lite total score.

Conclusions: Weight reductions to achieve MCIDs for most HRQL instruments are markedly higher than the conventional threshold of 5% to 10%. Surgical, but not medical treatment, consistently led to clinically important improvements in HRQL over two years.

Trial registration: Clinicaltrials.gov NCT00850356.

Figures

Figure 1
Figure 1
Health-related quality of life change by study group. Error bars depict ± standard error. EQ-index, EQ-5D index score; EQ-VAS, EQ-5D visual analog scale; IWQOL-Lite, Impact of Weight on Quality of Life – Lite questionnaire; MCS, Short form-12 mental component summary score; PCS, Short form-12 physical component summary score. *P <0.05 versus baseline.
Figure 2
Figure 2
Proportion of patients achieving MCIDs. PCS MCID = 5 points; MCS MCID = 5 points, EQ-Index MCID = 0.03 points; EQ-VAS MCID = 10 points; IWQOL-Lite Total Score MCID = 12 points. EQ-index, EQ-5D questionnaire index score; EQ-VAS, EQ-5D visual analog scale; IWQOL-Lite, Impact of Weight on Quality of Life – Lite questionnaire; MCS, Short Form-12 questionnaire mental component summary score; PCS, Short Form-12 questionnaire physical component summary score. *P <0.05 versus wait-listed.

References

    1. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. JAMA. 1999;282:1523–1529. doi: 10.1001/jama.282.16.1523.
    1. Masters RK, Reither EN, Powers DA, Yang YC, Burger AE, Link BG. The Impact of obesity on US mortality levels: the importance of age and cohort factors in population estimates. Am J Public Health. 2013;103:1895–1901. doi: 10.2105/AJPH.2013.301379.
    1. Katzmarzyk P, Mason C. Prevalence of class I, II and III obesity in Canada. CMAJ. 2006;174:156–157. doi: 10.1503/cmaj.050806.
    1. Bastien M, Poirier P, Lemieux I, Després J-P. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 2014;56:369–381. doi: 10.1016/j.pcad.2013.10.016.
    1. Lau D, Douketis J, Morrison K, Hramiak I, Sharma A, Ur E. Canadian Clinical Practice Guidelines on the management and prevention of obesity in adults and children. CMAJ. 2006;2007:S1–S130.
    1. NHLBI: NHLBI Obesity Education Initiative. The Practical Guide Identification, Evaluation, and Treatment of Overweight and Obesity in Adults. Bethesda, Maryland; 2000:1–80.
    1. Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, Hu FB, Hubbard VS, Jakicic JM, Kushner RF, Loria CM, Millen BE, Nonas CA, Pi-Sunyer FX, Stevens J, Stevens VJ, Wadden TA, Wolfe BM, Yanovski SZ, Jordan HS, Kendall KA, Lux LJ, Mentor-Marcel R, Morgan LC, Trisolini MG, Wnek J, Anderson JL, Halperin JL, Albert NM, Bozkurt B, et al. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation. 2014;129:S102–S138. doi: 10.1161/.
    1. Lavie CJ, McAuley PA, Church TS, Milani RV, Blair SN. Obesity and cardiovascular diseases: implications regarding fitness, fatness, and severity in the obesity paradox. J Am Coll Cardiol. 2014;63:1345–1354. doi: 10.1016/j.jacc.2014.01.022.
    1. Sjöström L, Narbro K, Sjöström CD, Karason K, Larsson B, Wedel H, Lystig T, Sullivan M, Bouchard C, Carlsson B, Bengtsson C, Dahlgren S, Gummesson A, Jacobson P, Karlsson J, Lindroos AK, Lönroth H, Näslund I, Olbers T, Stenlöf K, Torgerson J, Agren G, Carlsson LM, Swedish Obese Subjects Study Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357:741–752. doi: 10.1056/NEJMoa066254.
    1. Kolotkin RL, Meter K, Williams GR. Quality of life and obesity. Obes Rev. 2001;2:219–229. doi: 10.1046/j.1467-789X.2001.00040.x.
    1. Jaeschke R, Singer J, Guyatt GH. Measurement of health status. Ascertaining the minimal clinically important difference. Control Clin Trials. 1989;10:407–415. doi: 10.1016/0197-2456(89)90005-6.
    1. Crosby RD, Kolotkin RL, Williams GR. Defining clinically meaningful change in health-related quality of life. J Clin Epidemiol. 2003;56:395–407. doi: 10.1016/S0895-4356(03)00044-1.
    1. Padwal R, Majumdar S, Klarenbach S, Birch D, Karmali S, McCargar L, Fassbender K, Sharma A. The Alberta population-based prospective evaluation of the quality of life outcomes and economic impact of bariatric surgery (APPLES) study: background, design and rationale. BMC Health Serv Res. 2010;10:284. doi: 10.1186/1472-6963-10-284.
    1. Padwal RS, Rueda-Clausen CF, Sharma AM, Agborsangaya CB, Klarenbach S, Birch DW, Karmali S, McCargar L, Majumdar SR. Weight loss and outcomes in wait-listed, medically managed, and surgically treated patients enrolled in a population-based bariatric program: prospective cohort study. Med Care. 2014;52:208–215. doi: 10.1097/MLR.0000000000000070.
    1. van Nunen A, Wouters E, Vingerhoets A, Hox J, Geenen R. The health-related quality of life of obese persons seeking or not seeking surgical or non-surgical treatment: a meta-analysis. Obes Surg. 2007;17:1357–1366. doi: 10.1007/s11695-007-9241-9.
    1. Maciejewski ML, Patrick DL, Williamson DF. A structured review of randomized controlled trials of weight loss showed little improvement in health-related quality of life. J Clin Epidemiol. 2005;58:568–578. doi: 10.1016/j.jclinepi.2004.10.015.
    1. The SF-12(r): an even shorter health survey. []
    1. Stewart AL, Greenfield S, Hays RD. Functional status and well-being of patients with chronic conditions: results from the medical outcomes study. JAMA. 1989;262:907–913. doi: 10.1001/jama.1989.03430070055030.
    1. Wyrwich K, Tierney W, Babu A, Kroenke K, Wolinsky F. A comparison of clinically important differences in health-related quality of life for patients with chronic lung disease, asthma, or heart disease. Health Serv Res. 2005;40:577–592. doi: 10.1111/j.1475-6773.2005.0l374.x.
    1. Alliance for Canadian Health Outcomes Research in Diabetes. Alberta Provincial Norms for EQ-5D-3L. []
    1. EuroQol Group: EQ-5D: a standardized instrument for use as a measure of health outcomes. []
    1. Luo N, Johnson J, Coons S. Using instrument-defined health state transitions to estimate minimally important differences for four preference-based health-related quality of life instruments. Med Care. 2010;48:365–371. doi: 10.1097/MLR.0b013e3181c162a2.
    1. Quality of Life Consulting: Impact of Weight on Quality of Life-Lite (IWQOL-Lite). []
    1. Orfila F, Ferrer M, Lamarca R, Tebe C, Domingo-Salvany A, Alonso J. Gender differences in health-related quality of life among the elderly: the role of objective functional capacity and chronic conditions. Soc Sci Med. 2006;63:2367–2380. doi: 10.1016/j.socscimed.2006.06.017.
    1. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, Wood AM, Carpenter JR. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. doi: 10.1136/bmj.b2393.
    1. Warkentin LM, Majumdar SR, Johnson JA, Agborsangaya CB, Rueda-Clausen CF, Sharma AM, Klarenbach SW, Birch DW, Karmali S, McCargar L, Fassbender K, Padwal RS. Predictors of health-related quality of life in 500 severely obese patients. Obesity (Silver Spring, Md) 2014;22:1367–1372. doi: 10.1002/oby.20694.
    1. Rubin RR, Peyrot M, Wang NY, Coughlin JW, Jerome GJ, Fitzpatrick SL, Bennett WL, Dalcin A, Daumit G, Durkin N, Chang YT, Yeh HC, Louis TA, Appel LJ. Patient-reported outcomes in the practice-based opportunities for weight reduction (POWER) trial. Qual Life Res. 2013;22:2389–2398. doi: 10.1007/s11136-013-0363-3.
    1. Adams TD, Avelar E, Cloward T, Crosby RD, Farney RJ, Gress R, Halverson RC, Hopkins PN, Kolotkin RL, Lamonte MJ, Litwin S, Nuttall RT, Pendleton R, Rosamond W, Simper SC, Smith SC, Strong M, Walker JM, Wiebke G, Yanowitz FG, Hunt SC. Design and rationale of the Utah obesity study. A study to assess morbidity following gastric bypass surgery. Contemp Clin Trials. 2005;26:534–551. doi: 10.1016/j.cct.2005.05.003.
    1. Kolotkin RL, Crosby RD, Gress RE, Hunt SC, Adams TD. Two-year changes in health-related quality of life in gastric bypass patients compared with severely obese controls. Surg Obes Relat Dis. 2009;5:250–256. doi: 10.1016/j.soard.2009.01.009.
    1. Swift DL, Johannsen NM, Lavie CJ, Earnest CP, Church TS. The role of exercise and physical activity in weight loss and maintenance. Prog Cardiovasc Dis. 2014;56:441–447. doi: 10.1016/j.pcad.2013.09.012.
    1. Christou NV, Efthimiou E. Bariatric surgery waiting times in Canada. Can J Surg. 2009;52:229–234.
    1. Warkentin LM, Das D, Majumdar SR, Johnson JA, Padwal RS. The effect of weight loss on health-related quality of life: systematic review and meta-analysis of randomized trials. Obes Rev. 2014;15:169–182. doi: 10.1111/obr.12113.

Source: PubMed

3
订阅