Cells, matrix, growth factors, and the surgeon. The biology of scarless fetal wound repair

N S Adzick, H P Lorenz, N S Adzick, H P Lorenz

Abstract

Objective: This review updates the surgeon about the cellular, matrix, and growth factor components of scarless fetal wound repair.

Summary background data: Fetal skin wound healing is characterized by the absence of scar tissue formation. This unique repair process is not dependent on the sterile, aqueous intrauterine environment. The differences between fetal and adult skin wound healing appear to reflect processes intrinsic to fetal tissue, such as the unique fetal fibroblasts, a more rapid and ordered deposition and turnover of tissue components, and, particularly, a markedly reduced inflammatory infiltrate and cytokine profile. Scarless fetal wounds are relatively deficient in the inflammatory cytokine, transforming growth factor beta (TGF-beta). In contrast, the fibrosis characteristic of adult wound repair may be associated with TGF-beta excess. Recent experimental studies suggest that specific anti-TGF-beta therapeutic strategies can ameliorate scar formation in adult wound repair and fibrotic diseases. Inhibitors of TGF-beta may be important future drugs to control scar.

Conclusions: Based on the scarless fetal wound repair model, a number of ways in which the matrix and cellular response of the healing adult wound might be manipulated to reduce scarring are reviewed.

References

    1. Nature. 1992 Nov 26;360(6402):361-4
    1. Development. 1991 Jun;112(2):651-68
    1. Am J Pathol. 1991 Jun;138(6):1437-50
    1. J Pediatr Surg. 1990 Jan;25(1):63-8; discussion 68-9
    1. Dev Biol. 1991 Sep;147(1):207-15
    1. J Pediatr Surg. 1991 Jul;26(7):853-5
    1. Ann Surg. 1992 Aug;216(2):117-34
    1. Proc Soc Exp Biol Med. 1988 Apr;187(4):493-7
    1. Development. 1991 Feb;111(2):489-96
    1. Ann Surg. 1993 Apr;217(4):391-6
    1. Development. 1991 Feb;111(2):269-85
    1. J Pediatr Surg. 1988 Jul;23(7):647-52
    1. Biochim Biophys Acta. 1990 Jun 1;1032(1):79-87
    1. J Invest Dermatol. 1990 Mar;94(3):365-71
    1. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6642-6
    1. Curr Opin Cell Biol. 1990 Oct;2(5):839-44
    1. J Pediatr Surg. 1993 Oct;28(10):1227-31
    1. Science. 1986 Aug 15;233(4765):776-8
    1. Nature. 1990 Jul 26;346(6282):371-4
    1. Brain Res. 1992 Aug 7;587(2):216-25
    1. Nature. 1992 Nov 12;360(6400):179-83
    1. J Cell Biol. 1992 Dec;119(5):1017-21
    1. Development. 1992 Mar;114(3):573-82
    1. Lancet. 1992 Jan 25;339(8787):213-4
    1. Development. 1992 Jan;114(1):253-9
    1. Lab Invest. 1990 Jul;63(1):21-9
    1. J Cell Sci. 1991 Jul;99 ( Pt 3):583-6
    1. Cell. 1991 Mar 8;64(5):867-9
    1. Lab Invest. 1990 Aug;63(2):144-61
    1. Ann Surg. 1994 Jan;219(1):65-72
    1. J Cell Biol. 1993 Jul;122(1):103-11
    1. J Biol Chem. 1992 Jun 5;267(16):10931-4
    1. J Surg Res. 1992 Jan;52(1):65-70
    1. Prog Clin Biol Res. 1991;365:177-92
    1. J Surg Res. 1991 Apr;50(4):375-85
    1. Virchows Arch A Pathol Anat Histopathol. 1989;415(6):551-7
    1. N Engl J Med. 1991 Apr 4;324(14):933-40
    1. Wound Repair Regen. 1993 Jan;1(1):15-21
    1. J Pediatr Surg. 1985 Aug;20(4):315-9
    1. J Pediatr Surg. 1991 Aug;26(8):942-7; discussion 947-8
    1. Ann Surg. 1989 Nov;210(5):667-72
    1. Matrix. 1989 Jun;9(3):224-31
    1. Arch Surg. 1992 Dec;127(12):1451-62
    1. Ann N Y Acad Sci. 1990;580:161-75
    1. Ann Surg. 1991 Nov;214(5):605-13
    1. J Pediatr Surg. 1990 Apr;25(4):430-3

Source: PubMed

3
订阅