Self-Limiting versus Rotary Subjective Carious Tissue Removal: A Randomized Controlled Clinical Trial-2-Year Results

Ahmed H Ali, Farah Ben Thani, Federico Foschi, Avijit Banerjee, Francesco Mannocci, Ahmed H Ali, Farah Ben Thani, Federico Foschi, Avijit Banerjee, Francesco Mannocci

Abstract

Background: the aim of this study was to assess the 2-year pulp survival of deep carious lesions in teeth excavated using a self-limiting protocol in a single-blind randomized controlled clinical trial.

Methods: At baseline, 101 teeth with deep carious lesions in 86 patients were excavated randomly using self-limiting or control protocols. Standardized clinical examination and periapical radiographs of teeth were performed after 1- and 2-year follow-ups (REC 14/LO/0880).

Results: During the 2-year period of the study, 24 teeth failed (16 and 8 at T12 and T24, respectively). Final analysis shows that 39/63 (61.9%) of teeth were deemed successful (16/33 (48.4%) and 23/30 (76.6%) in the control and experimental groups, respectively with a statistically significant difference (z score = 2.3, p = 0.021). Of teeth with severe and mild symptoms at T0, 42.9% and 36.7% respectively failed at T24 (p > 0.05). Within the self-limiting group, there was a lower success in premolars compared to molars (p < 0.05).

Conclusion: after 2 years, there was a statistically significant higher pulp survival rate of teeth with deep carious lesions excavated using self-limiting protocols in patients with reversible pulpitis. Molars showed higher success than premolars in teeth excavated using the self-limiting protocol. There was no statistically significant association between the outcome and the severity of symptoms at T0 (ClinicalTrials.gov NCT03071588).

Keywords: Carisolv; caries; chemomechanical gel; clinical trial; computed tomography; microscopy; minimally invasive dentistry; periapical radiograph; pulpitis; rotary excavation; selective caries removal.

Conflict of interest statement

There was no conflict of interest to be declared by authors regarding this research.

Figures

Figure 1
Figure 1
Flow diagram representing patient recruitment and follow-up. At T12 and T 24, teeth that have no response to pulp sensibility tests or have a radiolucency in the periapex or received root canal treatments categorized as failed teeth.
Figure 2
Figure 2
Periapical radiolucency detected by PA radiograph. (a) Periapical radiograph of the lower left first molar with a healthy PDL space at T0 (b) T24 PA radiograph shows healthy periapical tissue. (c) Periapical radiograph of the upper left second molar with a healthy PDL space at T0 (d) T24 PA radiograph shows at the periapex of the tooth a periapical radiolucency.

References

    1. Selwitz R.H., Ismail A.I., Pitts N.B. Dental caries. Lancet. 2007;369:51–59. doi: 10.1016/S0140-6736(07)60031-2.
    1. Duncan H.F., Galler K.M., Tomson P.L., Simon S., El Karim I., Kundzina R., Krastl G., Dammaschke T., Fransson H., Markvart M., et al. European Society of Endodontology position statement: Management of deep caries and the exposed pulp. Int. Endod. J. 2019;52:923–934. doi: 10.1111/iej.13080.
    1. Schwendicke F., Göstemeyer G. Understanding dentists’ management of deep carious lesions in permanent teeth: A systematic review and meta-analysis. Implement. Sci. 2016;11:142. doi: 10.1186/s13012-016-0505-4.
    1. Bjørndal L., Fransson H., Bruun G., Markvart M., Kjældgaard M., Hedenbjörk-Lager A., Dige I., Thordrup M., Näsman P. Randomized clinical trials on deep carious lesions: 5-year follow-up. J. Dent. Res. 2017;96:747–753. doi: 10.1177/0022034517702620.
    1. Kidd E.A. Clinical threshold for carious tissue removal. Dent. Clin. N. Am. 2010;54:541–549. doi: 10.1016/j.cden.2010.03.001.
    1. Bjørndal L., Simon S., Tomson P.L., Duncan H.F. Management of deep caries and the exposed pulp. Int. Endod. J. 2019;52:949–973. doi: 10.1111/iej.13128.
    1. Asgary S., Ahmadyar M. Vital pulp therapy using calcium-enriched mixture: An evidence-based review. J. Conserv. Dent. 2013;16:92–98. doi: 10.4103/0972-0707.108173.
    1. Asgary S., Torabzadeh H. Indirect pulp therapy in a symptomatic mature molar using calcium enriched mixture cement. J. Conserv. Dent. 2013;16:83–86. doi: 10.4103/0972-0707.105306.
    1. Ricketts D., Lamont T., Innes N., Kidd E., Clarkson J.E. Operative caries management in adults and children. Cochrane Database Syst. Rev. 2013;3:CD003808. doi: 10.1002/14651858.CD003808.pub3.
    1. Banerjee A. Management of Deep Carious Lesions. Springer; New York, NY, USA: 2018. Selective Removal of Carious Dentin; pp. 55–70.
    1. Banerjee A., Kidd E., Watson T. In Vitro evaluation of five alternative methods of carious dentine excavation. Caries Res. 2000;34:144–150. doi: 10.1159/000016582.
    1. Banerjee A., Kellow S., Mannocci F., Cook R., Watson T. An In Vitro evaluation of microtensile bond strengths of two adhesive bonding agents to residual dentine after caries removal using three excavation techniques. J. Dent. 2010;38:480–489. doi: 10.1016/j.jdent.2010.03.002.
    1. Ali A., Köller G., Foschi F., Andiappan M., Bruce K., Banerjee A., Mannocci F. Self-limiting versus conventional caries removal: A randomized clinical trial. J. Dent. Res. 2018;97:1207–1213. doi: 10.1177/0022034518769255.
    1. Chwendicke F., Frencken J.E., Bjørndal L., Maltz M., Manton D.J., Ricketts D., Van Landuyt K., Banerjee A., Campus G., Doméjean S. Managing carious lesions: Consensus recommendations on carious tissue removal. Adv. Dent. Res. 2016;28:58–67. doi: 10.1177/0022034516639271.
    1. Banerjee A., Frencken J.E., Schwendicke F., Innes N. Contemporary operative caries management: Consensus recommendations on minimally invasive caries removal. Br. Dent. J. 2017;223:215–222. doi: 10.1038/sj.bdj.2017.672.
    1. Splieth C.H., Rosin M., Gellissen B. Determination of residual dentine caries after conventional mechanical and chemomechanical caries removal with Carisolv. Clin. Oral Investig. 2001;5:250–253. doi: 10.1007/s00784-001-0130-7.
    1. Neves A., Coutinho E., De Munck J., Van Meerbeek B. Caries-removal effectiveness and minimal-invasiveness potential of caries-excavation techniques: A micro-CT investigation. J. Dent. 2011;39:154–162. doi: 10.1016/j.jdent.2010.11.006.
    1. Banerjee A., Watson T., Kidd E. Conservative dentistry: Dentine caries excavation: A review of current clinical techniques. Br. Dent. J. 2000;188:476. doi: 10.1038/sj.bdj.4800515.
    1. Mjör I.A. Pulp-dentin biology in restorative dentistry. Quintessence Int. 2002;33:113–135.
    1. Mejàre I., Axelsson S., Davidson T., Frisk F., Hakeberg M., Kvist T., Norlund A., Petersson A., Portenier I., Sandberg H., et al. Diagnosis of the condition of the dental pulp: A systematic review. Int. Endod. J. 2012;45:597–613. doi: 10.1111/j.1365-2591.2012.02016.x.
    1. Bender I.B. Pulpal pain diagnosis—A review. J. Endod. 2000;26:175–179. doi: 10.1097/00004770-200003000-00012.
    1. Aguilar P., Linsuwanont P. Vital pulp therapy in vital permanent teeth with cariously exposed pulp: A systematic review. J. Endod. 2011;37:581–587. doi: 10.1016/j.joen.2010.12.004.
    1. Hashem D., Mannocci F., Patel S., Manoharan A., Brown J., Watson T., Banerjee A. Clinical and radiographic assessment of the efficacy of calcium silicate indirect pulp capping: A randomized controlled clinical trial. J. Dent. Res. 2015;94:562–568. doi: 10.1177/0022034515571415.
    1. Hashem D., Mannocci F., Patel S., Manoharan A., Watson T.F., Banerjee A. Evaluation of the efficacy of calcium silicate vs. glass ionomer cement indirect pulp capping and restoration assessment criteria: A randomised controlled clinical trial—2-year results. Clin. Oral Investig. 2018;23:1931–1939. doi: 10.1007/s00784-018-2638-0.
    1. Patel S., Wilson R., Dawood A., Foschi F., Mannocci F. The detection of periapical pathosis using digital periapical radiography and cone beam computed tomography—Part 2: A 1-year post-treatment follow-up. Int. Endod. J. 2012;45:711–723. doi: 10.1111/j.1365-2591.2012.02076.x.
    1. Ali A., Almaroof A., Festy F., Banerjee A., Mannocci F. In Vitro remineralization of caries-affected dentin after selective carious tissue removal. World J. Dent. 2018;9:170–179. doi: 10.5005/jp-journals-10015-1529.
    1. Ali A. Ph.D. Thesis. Kings College London; London, UK: 2017. The Assessment of a Minimally Invasive Procedure in the Treatment of Deep Carious Lesions: In Vivo and In Vitro Studies.
    1. Rupf S., Hannig M., Breitung K., Schellenberger W., Eschrich K., Remmerbach T., Kneist S. Phenotypic heterogeneity ofstreptococcus mutansin dentin. J. Dent. Res. 2008;87:1172–1176. doi: 10.1177/154405910808701203.
    1. Lager A.H. Ph.D. Thesis. Faculty of Odontology, Malmö University; Malmö, Sweden: 2014. Dentine Caries: Acid-Tolerant Microorganisms and Aspects on Collagen Degradation.
    1. Caviedes-Bucheli J., Lombana N., Azuero-Holguín M.M., Muñoz H.R. Quantification of neuropeptides (calcitonin gene-related peptide, substance P, neurokinin A, neuropeptide Y and vasoactive intestinal polypeptide) expressed in healthy and inflamed human dental pulp. Int. Endod. J. 2006;39:394–400. doi: 10.1111/j.1365-2591.2006.01093.x.
    1. Hørsted P., Søndergaard B., Thylstrup A., El Attar K., Fejerskov O. A retrospective study of direct pulp capping with calcium hydroxide compounds. Dent. Traumatol. 1985;1:29–34. doi: 10.1111/j.1600-9657.1985.tb00555.x.
    1. Schwendicke F., Dörfer C., Paris S. Incomplete caries removal. J. Dent. Res. 2013;92:306–314. doi: 10.1177/0022034513477425.
    1. Ali A., Banerjee A., Mannocci F. Effect of adhesive materials on shear bond strength of a mineral trioxide aggregate. Am. J. Dent. 2016;29
    1. Patel S., Durack C., Abella F., Roig M., Shemesh H., Lambrechts P., Lemberg K. European Society of Endodontology position statement: The use of CBCT in endodontics. Int. Endod. J. 2014;47:502–504. doi: 10.1111/iej.12267.

Source: PubMed

3
订阅