Gains in cognition through combined cognitive and physical training: the role of training dosage and severity of neurocognitive disorder

Panagiotis D Bamidis, Patrick Fissler, Sokratis G Papageorgiou, Vasiliki Zilidou, Evdokimos I Konstantinidis, Antonis S Billis, Evangelia Romanopoulou, Maria Karagianni, Ion Beratis, Angeliki Tsapanou, Georgia Tsilikopoulou, Eirini Grigoriadou, Aristea Ladas, Athina Kyrillidou, Anthoula Tsolaki, Christos Frantzidis, Efstathios Sidiropoulos, Anastasios Siountas, Stavroula Matsi, John Papatriantafyllou, Eleni Margioti, Aspasia Nika, Winfried Schlee, Thomas Elbert, Magda Tsolaki, Ana B Vivas, Iris-Tatjana Kolassa, Panagiotis D Bamidis, Patrick Fissler, Sokratis G Papageorgiou, Vasiliki Zilidou, Evdokimos I Konstantinidis, Antonis S Billis, Evangelia Romanopoulou, Maria Karagianni, Ion Beratis, Angeliki Tsapanou, Georgia Tsilikopoulou, Eirini Grigoriadou, Aristea Ladas, Athina Kyrillidou, Anthoula Tsolaki, Christos Frantzidis, Efstathios Sidiropoulos, Anastasios Siountas, Stavroula Matsi, John Papatriantafyllou, Eleni Margioti, Aspasia Nika, Winfried Schlee, Thomas Elbert, Magda Tsolaki, Ana B Vivas, Iris-Tatjana Kolassa

Abstract

Physical as well as cognitive training interventions improve specific cognitive functions but effects barely generalize on global cognition. Combined physical and cognitive training may overcome this shortcoming as physical training may facilitate the neuroplastic potential which, in turn, may be guided by cognitive training. This study aimed at investigating the benefits of combined training on global cognition while assessing the effect of training dosage and exploring the role of several potential effect modifiers. In this multi-center study, 322 older adults with or without neurocognitive disorders (NCDs) were allocated to a computerized, game-based, combined physical and cognitive training group (n = 237) or a passive control group (n = 85). Training group participants were allocated to different training dosages ranging from 24 to 110 potential sessions. In a pre-post-test design, global cognition was assessed by averaging standardized performance in working memory, episodic memory and executive function tests. The intervention group increased in global cognition compared to the control group, p = 0.002, Cohen's d = 0.31. Exploratory analysis revealed a trend for less benefits in participants with more severe NCD, p = 0.08 (cognitively healthy: d = 0.54; mild cognitive impairment: d = 0.19; dementia: d = 0.04). In participants without dementia, we found a dose-response effect of the potential number and of the completed number of training sessions on global cognition, p = 0.008 and p = 0.04, respectively. The results indicate that combined physical and cognitive training improves global cognition in a dose-responsive manner but these benefits may be less pronounced in older adults with more severe NCD. The long-lasting impact of combined training on the incidence and trajectory of NCDs in relation to its severity should be assessed in future long-term trials.

Keywords: aging; cognitive training; combined intervention; dementia; exergames; mild cognitive impairment; neurocognitive disorder; physical training.

Figures

FIGURE 1
FIGURE 1
Flow of participant chart. Flow of participants within the intervention and passive control group.
FIGURE 2
FIGURE 2
Intervention effects on global cognition. Intervention and passive control group comparison of z-standardized pre- and post-test global cognition. The asterisk indicates a significant beneficial effect of the intervention compared to the control group on post-test performance accounted for baseline cognitive performance, education, age and study center, p = 0.002, Cohen’s d = 0.31. Arrows represent SE.
FIGURE 3
FIGURE 3
Moderation and dose-response effects for global cognition. (A) Change in global cognition (partial residuals accounting for covariates) of the intervention group (light gray), compared to the passive control group (dark gray) within cognitively healthy participants, participants with mild cognitive impairment (MCI) and dementia. Arrows represent SE. (B) Change in global cognition (partial residuals accounting for covariates) as a function of the number of training sessions within a subsample which were either cognitively healthy or diagnosed with mild cognitive impairment.

References

    1. Ainslie P. N., Cotter J. D., George K. P., Lucas S., Murrell C., Shave R., et al. (2008). Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J. Physiol. 586 4005–4010. 10.1113/jphysiol.2008.158279
    1. Alzheimer’s Association. (2014). 2014 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 10: e47–e92. 10.1016/j.jalz.2014.02.001
    1. American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders. Arlington, VA: American Psychiatric Publishing.
    1. Anderson-Hanley C., Arciero P. J., Brickman A. M., Nimon J. P., Okuma N., Westen S. C., et al. (2012). Exergaming and older adult cognition: a cluster randomized clinical trial. Am. J. Prev. Med. 42 109–119. 10.1016/j.amepre.2011.10.016
    1. Angevaren M., Aufdemkampe G., Verhaar H. J. J., Aleman A., Vanhees L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst. Rev. CD005381 10.1002/14651858.CD005381.pub2
    1. Arnold S. E., Louneva N., Cao K., Wang L.-S., Han L.-Y., Wolk D. A., et al. (2013). Cellular, synaptic, and biochemical features of resilient cognition in Alzheimer’s disease. Neurobiol. Aging 34 157–168. 10.1016/j.neurobiolaging.2012.03.004
    1. Bahar-Fuchs A., Clare L., Woods B. (2013). Cognitive training and cognitive rehabilitation for persons with mild to moderate dementia of the Alzheimer’s or vascular type: a review. Alzheimer’s Res. Ther. 5 35 10.1186/alzrt189
    1. Ball K., Berch D., Helmers K., Jobe J., Leveck M., Marsiske M., et al. (2002). Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA 288 2271–2281. 10.1001/jama.288.18.2271
    1. Ball K., Ross L. A., Roth D. L., Edwards J. D. (2013). Speed of processing training in the ACTIVE study how much is needed and who benefits? J. Aging Health 25 65S–84S. 10.1177/0898264312470167
    1. Bamidis P. D. (2012). Long Lasting Memories Project Deliverable D1.4 Final report. Available at:
    1. Bamidis P. D., Konstantinidis E. I., Billis A., Frantzidis C., Tsolaki M., Hlauschek W., et al. (2011). A Web services-based exergaming platform for senior citizens: the Long Lasting Memories project approach to e-health care. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011 2505–2509. 10.1109/iembs.2011.6090694
    1. Bamidis P. D., Vivas A. B., Styliadis C., Frantzidis C., Klados M., Schlee W., et al. (2014). A review of physical and cognitive interventions in aging. Neurosci. Biobehav. Rev. 44 206–220. 10.1016/j.neubiorev.2014.03.019
    1. Baniqued P. L., Kranz M. B., Voss M. W., Lee H., Cosman J. D., Severson J., et al. (2014). Cognitive training with casual video games: points to consider. Front. Psychol. 4:1010 10.3389/fpsyg.2013.01010
    1. Barnes D. E., Santos-Modesitt W., Poelke G., Kramer A. F., Castro C., Middleton L. E., et al. (2013). The Mental activity and eXercise (MAX) trial: a randomized controlled trial to enhance cognitive function in older adults. JAMA Int. Med. 173 797–804. 10.1001/jamainternmed.2013.189
    1. Barnes D. E., Yaffe K., Belfor N., Jagust W. J., Decarli C., Reed B. R., et al. (2009). Computer-based cognitive training for mild cognitive impairment: results from a pilot randomized, controlled trial. Alzheimer Dis. Assoc. Disord. 23 205–2010. 10.1097/WAD.0b013e31819c6137
    1. Beck I. R., Schmid N. S., Berres M., Monsch A. U. (2014). Establishing robust cognitive dimensions for characterization and differentiation of patients with Alzheimer’s disease, mild cognitive impairment, frontotemporal dementia and depression. Int. J. Geriatr. Psychiatry 29 624–634. 10.1002/gps.4045
    1. Berry A. S., Zanto T. P., Clapp W. C., Hardy J. L., Delahunt P. B., Mahncke H. W., et al. (2010). The Influence of perceptual training on working memory in older adults. PLoS ONE 5:e11537 10.1371/journal.pone.0011537
    1. Billis A. S., Konstantinidis E. I., Mouzakidis C., Tsolaki M. N., Pappas C., Bamidis P. D. (2010). “A Game-Like Interface for Training Seniors’ Dynamic Balance and Coordination,” in XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010, eds Bamidis P., Pallikarakis N. (Berlin: Springer; ), 691–694. 10.1007/978-3-642-13039-7_174
    1. Billis A. S., Konstantinidis E. I., Zilidou V., Wadhwa K., Ladas A. K., Bamidis P. D. (2013). Biomedical Engineering and Elderly Support. Int. J. Reliable Quality E Health. 2 21–37. 10.4018/ijrqeh.2013040102
    1. Braak H., Thal D. R., Ghebremedhin E., Del Tredici K. (2011). Stages of the pathologic process in alzheimer disease: age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 70 960 10.1097/NEN.0b013e318232a379
    1. Buckner R. L. (2004). Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44 195–208. 10.1016/j.neuron.2004.09.006
    1. Buschert V., Bokde A. L. W., Hampel H. (2010). Cognitive intervention in Alzheimer disease. Nat. Rev. Neurol. 6 508–517. 10.1038/nrneurol.2010.113
    1. Buschert V. C., Friese U., Teipel S. J., Schneider P., Merensky W., Rujescu D., et al. (2011). Effects of a newly developed cognitive intervention in amnestic mild cognitive impairment and mild Alzheimer’s disease: a pilot study. J. Alzheimer’s Dis. 25 679–694. 10.3233/JAD-2011-100999
    1. Chacko A., Bedard A. C., Marks D. J., Feirsen N., Uderman J. Z., Chimiklis A., et al. (2014). A randomized clinical trial of cogmed working memory training in school-age children with ADHD: a replication in a diverse sample using a control condition. J. Child Psychol. Psychiatry 55 247–255. 10.1111/jcpp.12146
    1. Cheng S.-T., Chow P. K., Song Y.-Q., Yu E., Chan A., Lee T., et al. (2013). Mental and physical activities delay cognitive decline in older persons with dementia. Am. J. Geriatr. Psychiatry 10 1–13. 10.1016/j.jagp.2013.01.060
    1. Colcombe S. J., Kramer A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14 125–130. 10.1111/1467-9280.t01-1-01430
    1. Cotman C., Berchtold N., Christie L. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30 464–472. 10.1016/j.tins.2007.06.011
    1. Dahlin E., Neely A. S., Larsson A., Backman L., Nyberg L. (2008). Transfer of learning after updating training mediated by the striatum. Science 320 1510–1512. 10.1126/science.1155466
    1. Delis D. C., Kramer J. H., Kaplan E., Ober B. A. (1987). California Verbal Learning Test: Adult version Manual. San Antonio, TX: The Psychological Corporation.
    1. Economou A., Papageorgiou S. G., Karageorgiou C., Vassilopoulos D. (2007). Nonepisodic memory deficits in amnestic MCI. Cogn. Behav. Neurol. 20 99–106. 10.1097/WNN.0b013e31804c6fe7
    1. Erickson K. I., Voss M. W., Prakash R. S., Basak C., Szabo A., Chaddock L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. U.S.A. 108 3017–3022. 10.1073/pnas.1015950108
    1. Fabel K., Wolf S., Ehninger D., Babu H., Leal-Galicia P., Kempermann G. (2009). Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front. Neurosci. 3:50 10.3389/neuro.22.002.2009.
    1. Fabre C., Chamari K., Mucci P., Masse-Biron J., Prefaut C. (2002). Improvement of cognitive function by mental and/or individualized aerobic training in healthy elderly subjects. Int. J. Sports Med. 23 415–421. 10.1055/s-2002-33735
    1. Fissler P., Küster O., Schlee W., Kolassa I. T. (2013). Novelty interventions to enhance broad cognitive abilities and prevent dementia: synergistic approaches for the facilitation of positive plastic change. Prog. Brain Res. 207 403–434. 10.1016/B978-0-444-63327-9.00017-5
    1. Flick S. N. (1988). Managing attrition in clinical research. Clin. Psychol. Rev. 8 499–515. 10.1016/0272-7358(88)90076-1
    1. Folstein M. F., Folstein S. E., Mchugh P. R. (1975). Mini-Mental State: a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12 189–198. 10.1016/0022-3956(75)90026-6
    1. Frantzidis C. A., Vivas A. B., Tsolaki A., Klados M. A., Tsolaki M., Bamidis P. D. (2014). Functional disorganization of small-world brain networks in mild Alzheimer’s Disease and amnestic Mild Cognitive Impairment: an EEG study using Relative Wavelet Entropy (RWE). Front. Aging Neurosci. 6:224 10.3389/fnagi.2014.00224
    1. Harrison T. L., Shipstead Z., Hicks K. L., Hambrick D. Z., Redick T. S., Engle R. W. (2013). Working memory training may increase working memory capacity but not fluid intelligence. Psychol. Sci. 24 2409–2419. 10.1177/0956797613492984
    1. Hill A. B. (1965). The environment and disease: association or causation? Proc. R. Soc. Med. 58 295.
    1. Hindin S. B., Zelinski E. M. (2012). Extended practice and aerobic exercise interventions benefit untrained cognitive outcomes in older adults: a meta-analysis. J. Am. Geriatr. Soc. 60 136–141. 10.1111/j.1532-5415.2011.03761.x
    1. Holm S. (1979). A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6 65–70.
    1. Hötting K., Röder B. (2013). Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci. Biobehav. Rev. 37(9Pt B), 2243–2257. 10.1016/j.neubiorev.2013.04.005
    1. Hughes C. P., Berg L., Danziger W. L., Coben L. A., Martin R. L. (1982). A new clinical scale for the staging of dementia. Br. J. Psychiatry 140 566–572. 10.1192/bjp.140.6.566
    1. Hurd M. D., Martorell P., Delavande A., Mullen K. J., Langa K. M. (2013). Monetary costs of dementia in the United States. N. Engl. J. Med. 368 1326–1334. 10.1056/NEJMsa1204629
    1. Imtiaz B., Tolppanen A.-M., Kivipelto M., Soininen H. (2014). Future directions in alzheimer’s disease from risk factors to prevention. Biochem. Pharmacol. 88 661–670. 10.1016/j.bcp.2014.01.003
    1. Kahan B. C., Morris T. P. (2013). Analysis of multicentre trials with continuous outcomes: when and how should we account for centre effects? Statist. Med. 32 1136–1149. 10.1002/sim.5667
    1. Karbach J., Verhaeghen P. (2014). Making working memory work: a meta-analysis of executive-control and working memory training in older adults. Psychol. Sci. 25 2027–2037. 10.1177/0956797614548725
    1. Karr J. E., Areshenkoff C. N., Rast P., Garcia-Barrera M. A. (2014). An empirical comparison of the therapeutic benefits of physical exercise and cognitive training on the executive functions of older adults: a meta-analysis of controlled trials. Neuropsychology 28 829–845. 10.1037/neu0000101
    1. Kattenstroth J.-C., Kalisch T., Holt S., Tegenthoff M., Dinse H. R. (2013). Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Front. Aging Neurosci. 5:5 10.3389/fnagi.2013.00005
    1. Kelly M. E., Loughrey D., Lawlor B. A., Robertson I. H., Walsh C., Brennan S. (2014a). The impact of cognitive training and mental stimulation on cognitive and everyday functioning of healthy older adults: a systematic review and meta-analysis. Ageing Res. Rev. 15 28–43. 10.1016/j.arr.2014.02.004
    1. Kelly M. E., Loughrey D., Lawlor B. A., Robertson I. H., Walsh C., Brennan S. (2014b). The impact of exercise on the cognitive functioning of healthy older adults: a systematic review and meta-analysis. Ageing Res. Rev. 16 12–31. 10.1016/j.arr.2014.05.002
    1. Kempermann G. (2008). The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends Neurosci. 31 163–169. 10.1016/j.tins.2008.01.002
    1. Knopman D. S., Dekosky S. T., Cummings J. L., Chui H., Corey-Bloom J., Relkin N., et al. (2001). Practice parameter: diagnosis of dementia (an evidence-based review). Report of the quality standards subcommittee of the American Academy of Neurology. Neurology 56 1143–1153. 10.1212/WNL.56.9.1143
    1. Konstantinidis E. I., Billis A., Hlauschek W., Panek P., Bamidis P. D. (2010). Integration of cognitive and physical training in a smart home environment for the elderly people. Stud. Health Technol. Inform. 160 58–62.
    1. Konstantinidis E. I., Billis A. S., Mouzakidis C. A., Zilidou V. I., Antoniou P. E., Bamidis P. D. (2014). Design, implementation and wide pilot deployment of FitForAll: an easy to use exergaming platform improving physical fitness and life quality of senior citizens. IEEE J. Biomed. Health Inform. 10.1109/JBHI.2014.2378814
    1. Kraft E. (2012). Cognitive function, physical activity, and aging: possible biological links and implications for multimodal interventions. Aging Neuropsychol. Cogn. 19 248–263. 10.1080/13825585.2011.645010
    1. Kramer A. F., Hahn S., Cohen N. J., Banich M. T., Mcauley E., Harrison C. R., et al. (1999). Ageing, fitness and neurocognitive function. Nature 400 418–419. 10.1038/22682
    1. Lampit A., Hallock H., Moss R., Kwok S. M., Rosser M., Lukjanenko M., et al. (2014a). The timecourse of global cognitive gains from supervised computer-assisted cognitive training: a randomised, active-controlled trial in elderly with multiple dementia risk factors. J. Prevent. Alzheimer’s Dis. 1 33–39.
    1. Lampit A., Hallock H., Valenzuela M. (2014b). Computerized cognitive training in cognitively healthy older adults: a systematic review and meta-analysis of effect modifiers. PLoS Med. 11:e1001756 10.1371/journal.pmed.1001756
    1. Landau S. M., Marks S. M., Mormino E. C., Rabinovici G. D., Oh H., O’neil J. P., et al. (2012). Association of lifetime cognitive engagement and low β-amyloid deposition. Arch. Neurol. 69 623–629. 10.1001/archneurol.2011.2748
    1. Langdon K. D., Corbett D. (2012). Improved working memory following novel combinations of physical and cognitive activity. Neurorehabil. Neural. Rep. 26 523–532. 10.1177/1545968311425919
    1. Lautenschlager N., Cox K., Flicker L., Foster J., Van Bockxmeer F., Xiao J., et al. (2008). Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA 300 1027–1037. 10.1001/jama.300.9.1027
    1. Law L. L. F., Barnett F., Yau M. K., Gray M. A. (2014). Effects of combined cognitive and exercise interventions on cognition in older adults with and without cognitive impairment: a systematic review. Ageing Res. Rev. 15 61–75. 10.1016/j.arr.2014.02.008
    1. Lawton M., Brody E. (1969). Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9 179–186. 10.1093/geront/9.3_Part_1.179
    1. Lazarov O., Robinson J., Tang Y. P., Hairston I. S., Korade-Mirnics Z., Lee V. M. Y., et al. (2005). Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120 701–713. 10.1016/j.cell.2005.01.015
    1. Leckie R. L., Weinstein A. M., Hodzic J. C., Erickson K. I. (2012). Potential moderators of physical activity on brain health. J. Aging Res. 2012:948981 10.1155/2012/948981
    1. Li S., Jin M., Zhang D., Yang T., Koeglsperger T., Fu H., et al. (2013). Environmental novelty activates β2-adrenergic signaling to prevent the impairment of hippocampal LTP by Aβ oligomers. Neuron 77 929–941. 10.1016/j.neuron.2012.12.040
    1. Liang K. Y., Mintun M. A., Fagan A. M., Goate A. M., Bugg J. M., Holtzman D. M., et al. (2010). Exercise and Alzheimer’s disease biomarkers in cognitively normal older adults. Ann. Neurol. 68 311–318. 10.1002/ana.22096
    1. Liu-Ambrose T., Nagamatsu L. S., Graf P., Beattie B. L., Ashe M. C., Handy T. C. (2010). Resistance training and executive functions: A 12-month randomized controlled trial. Arch. Int. Med. 170 170–178. 10.1001/archinternmed.2009.494
    1. Mahncke H. W., Bronstone A., Merzenich M. M. (2006a). Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Prog. Brain Res. 157 81–109. 10.1016/s0079-6123(06)57006-2
    1. Mahncke H. W., Connor B. B., Appelman J., Ahsanuddin O. N., Hardy J. L., Wood R. A., et al. (2006b). Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proc. Natl. Acad. Sci. U.S.A. 103 12523–12528. 10.1073/pnas.0605194103
    1. Moher D., Hopewell S., Schulz K. F., Montori V., Gøtzsche P. C., Devereaux P. J., et al. (2010). CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ 340:c869 10.1136/bmj.c869
    1. Mortimer J. A., Ding D., Borenstein A. R., Decarli C., Guo Q., Wu Y., et al. (2012). Changes in brain volume and cognition in a randomized trial of exercise and social interaction in a community-based sample of non-demented Chinese elders. J. Alzheimer’s Dis. 30 757–766.
    1. Ngandu T., Lehtisalo J., Solomon A., Levälahti E., Ahtiluoto S., Antikainen R., et al. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised contro led trial. Lancet 385 2255–2263. 10.1016/S0140-6736(15)60461-5
    1. Oswald W., Gunzelmann T., Rupprecht R., Hagen B. (2006). Differential effects of single versus combined cognitive and physical training with older adults: the SimA study in a 5-year perspective. Eur. J. Ageing 3 179–192. 10.1007/s10433-006-0035-z
    1. Owen A. M., Hampshire A., Grahn J. A., Stenton R., Dajani S., Burns A. S., et al. (2010). Putting brain training to the test. Nature 465 775–778. 10.1038/nature09042
    1. Park D. C., Lautenschlager G., Hedden T., Davidson N. S., Smith A. D., Smith P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychol. Aging 17 299–320. 10.1037/0882-7974.17.2.299
    1. Park D. C., Lodi-Smith J., Drew L., Haber S., Hebrank A., Bischof G. N., et al. (2014). The impact of sustained engagement on cognitive function in older adults: the synapse project. Psychol. Sci. 25 103–112. 10.1177/0956797613499592
    1. Peretz C., Korczyn A. D., Shatil E., Aharonson V., Birnboim S., Giladi N. (2011). Computer-based, personalized cognitive training versus classical computer games: a randomized double-blind prospective trial of cognitive stimulation. Neuroepidemiology 36 91–99. 10.1159/000323950
    1. Petersen R. C. (2004). Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256 183–194. 10.1111/j.1365-2796.2004.01388.x
    1. Pinheiro J., Bates D., Debroy S., Sarkar D. R Development Core Team. (2010). nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-97. Available at: .
    1. Pitner J. K., Bachman D. L. (2004). A synopsis of the practice parameters on dementia from the american academy of neurology on the diagnosis of dementia. Consult. Pharm. 19 52–63. 10.4140/TCP.n.2004.52
    1. R Development Core Team. (2011). R: A Language and Environment for Statistical Computing. (Vienna: R Foundation for Statistical Computing; ).
    1. Rasmussen P., Brassard P., Adser H., Pedersen M. V., Leick L., Hart E., et al. (2009). Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 94 1062–1069. 10.1113/expphysiol.2009.048512
    1. Raz N., Lindenberger U., Rodrigue K., Kennedy K., Head D., Williamson A., et al. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb. Cortex 15 1676–1689. 10.1093/cercor/bhi044
    1. Raz N., Rodrigue K. (2006). Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci. Biobehav. Rev. 30 730–748. 10.1016/j.neubiorev.2006.07.001
    1. Rebok G. W., Ball K., Guey L. T., Jones R. N., Kim H.-Y., King J. W., et al. (2014). Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. J. Am. Geriatr. Soc. 62 16–24. 10.1111/jgs.12607
    1. Reitan R. M. (1958). Validity of the Trail Making Test as an indicator of organic brain damage. Percept. Mot. Skills 8 271–276. 10.2466/pms.1958.8.3.271
    1. Rikli R. E., Jones C. J. (2001). Senior Fitness Test Manual. Champaign, IL: Human Kinetics.
    1. Roback P. J., Askins R. A. (2005). Judicious use of multiple hypothesis tests. Conserv. Biol. 19 261–267. 10.1111/j.1523-1739.2005.00269.x
    1. Robert P., König A., Amieva H., Andrieu S., Bremond F., Bullock R., et al. (2014). Recommendations for the use of Serious Games in people with Alzheimer’s Disease, related disorders and frailty. Front. Aging Neurosci. 6:54 10.3389/fnagi.2014.00054
    1. Rothman K. J. (1990). No adjustments are needed for multiple comparisons. Epidemiology 1 43–46. 10.1097/00001648-199001000-00010
    1. Sanchez-Cubillo I., Perianez J., Adrover-Roig D., Rodriguez-Sanchez J., Rios-Lago M., Tirapu J., et al. (2009). Construct validity of the trail making test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J. Int. Neuropsychol. Soc. 15 438–450. 10.1017/S1355617709090626
    1. Schmiedek F., Lövdén M., Lindenberger U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: findings from the COGITO study. Front. Aging Neurosci. 2:27 10.3389/fnagi.2010.00027
    1. Schneider L. S., Mangialasche F., Andreasen N., Feldman H., Giacobini E., Jones R., et al. (2014). Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. J. Int. Med. 275 251–283. 10.1111/joim.12191
    1. Shah T., Verdile G., Sohrabi H., Campbell A., Putland E., Cheetham C., et al. (2014). A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly. Trans. Psychiatry 4:e487 10.1038/tp.2014.122
    1. Sheikh J. I., Yesavage J. A. (1986). Geriatric depression scale (gds): recent evidence and development of a shorter version. Clin. Gerontol. 5 165–173. 10.1300/J018v05n01_09
    1. Sitzer D., Twamley E., Jeste D. (2006). Cognitive training in Alzheimer’s disease: a meta analysis of the literature. Acta Psychiatr. Scand. 114 75–90. 10.1111/j.1600-0447.2006.00789.x
    1. Skevington S. M., Lotfy M., O’connell K. A. (2004). The world health organization’s WHOQOL-BREF quality of life assessment: psychometric properties and results of the international field trial. A report from the WHOQOL Group. Quality Life Res. 13 299–310. 10.1023/b:qure.0000018486.91360.00
    1. Smith G. E., Housen P., Yaffe K., Ruff R., Kennison R. F., Mahncke H. W., et al. (2009). A cognitive training program based on principles of brain plasticity: results from the improvement in memory with plasticity-based adaptive cognitive training (IMPACT) study. J. Am. Geriatr. Soc. 57 594–603. 10.1111/j.1532-5415.2008.02167.x
    1. Smith J. C., Nielson K. A., Woodard J. L., Seidenberg M., Durgerian S., Hazlett K. E., et al. (2014). Physical activity reduces hippocampal atrophy in elders at genetic risk for Alzheimer’s disease. Front. Aging Neurosci. 6:61 10.3389/fnagi.2014.00061
    1. Smith J. C., Paulson E. S., Cook D. B., Verber M. D., Tian Q. (2010a). Detecting changes in human cerebral blood flow after acute exercise using arterial spin labeling: implications for fMRI. J. Neurosci. Methods 191 258–262. 10.1016/j.jneumeth.2010.06.028
    1. Smith P. J., Blumenthal J. A., Hoffman B. M., Cooper H., Strauman T. A., Welsh-Bohmer K., et al. (2010b). Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom. Med. 72 239–252. 10.1097/PSY.0b013e3181d14633
    1. Sorbi S., Hort J., Erkinjuntti T., Fladby T., Gainotti G., Gurvit H., et al. (2012). EFNS-ENS Guidelines on the diagnosis and management of disorders associated with dementia. Eur. J. Neurol. 19 1159–1179. 10.1111/j.1468-1331.2012.03784.x
    1. Streiner D. L. (2008). Missing data and the trouble with LOCF. Evid. Based Ment. Health 11 3–5. 10.1136/ebmh.11.1.3-a
    1. Subramaniam K., Luks T. L., Garrett C., Chung C., Fisher M., Nagarajan S., et al. (2014). Intensive cognitive training in schizophrenia enhances working memory and associated prefrontal cortical efficiency in a manner that drives long-term functional gains. Neuroimage 99 281–292. 10.1016/j.neuroimage.2014.05.057
    1. Tombaugh T. N., McIntyre N. J. (1992). The mini mental state examination: a comprehensive review. J. Am. Geriatr. Soc. 40 922–935. 10.1111/j.1532-5415.1992.tb01992.x
    1. Trachtenberg J. T., Chen B. E., Knott G. W., Feng G., Sanes J. R., Welker E., et al. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420 788–794. 10.1038/nature01273
    1. Tucker-Drob E. M. (2011). Neurocognitive functions and everyday functions change together in old age. Neuropsychology 25 368 10.1037/a0022348
    1. Unverzagt F. W., Guey L. T., Jones R. N., Marsiske M., King J. W., Wadley V. G., et al. (2012). ACTIVE Cognitive training and rates of incident dementia. J. Int. Neuropsychol. Soc. 18 669–677. 10.1017/S1355617711001470
    1. Valenzuela M. J., Matthews F. E., Brayne C., Ince P., Halliday G., Kril J. J., et al. (2011). Multiple biological pathways link cognitive lifestyle to protection from dementia. Biol. Psychiatry 71 783–791. 10.1016/j.biopsych.2011.07.036
    1. Valenzuela M. J., Sachdev P., Wen W., Chen X., Brodaty H. (2008). Lifespan mental activity predicts diminished rate of hippocampal atrophy. PLoS ONE 3:e2598 10.1371/journal.pone.0002598
    1. van Uffelen J., Chin A., Hopman-Rock M., Van Mechelen W. (2008). The effects of exercise on cognition in older adults with and without cognitive decline: a systematic review. Clin. J. Sport Med. 18 486 –500. 10.1097/JSM.0b013e3181845f0b
    1. Waldemar G., Dubois B., Emre M., Scheltens P., Tariska P., Rossor M. (2000). Diagnosis and management of Alzheimer’s disease and other disorders associated with dementia. The role of neurologists in Europe. European Federation of Neurological Societies. Eur. J. Neurol. 7 133–144. 10.1046/j.1468-1331.2000.00030.x
    1. Walton C. C., Mowszowski L., Lewis S. J., Naismith S. L. (2014). Stuck in the mud: time for change in the implementation of cognitive training research in ageing? Front. Aging Neurosci. 6:43 10.3389/fnagi.2014.00043
    1. Wechsler D. (1997). WAIS-III: Administration and Scoring Manual: Wechsler Adult Intelligence Scale. San Antonio, TX: Psychological Corporation.
    1. Whitlock L. A., Mclaughlin A. C., Allaire J. C. (2012). Individual differences in response to cognitive training: using a multi-modal, attentionally demanding game-based intervention for older adults. Comput. Hum. Behav. 28 1091–1096. 10.1016/j.chb.2012.01.012
    1. Wolf S., Kronenberg G., Lehmann K., Blankenship A., Overall R., Staufenbiel M., et al. (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biol. Psychiatry 60 1314–1323. 10.1016/j.biopsych.2006.04.004
    1. Zelinski E. M., Spina L. M., Yaffe K., Ruff R., Kennison R. F., Mahncke H. W., et al. (2011). Improvement in memory with plasticity based adaptive cognitive training: results of the 3 month follow up. J. Am. Geriatr. Soc. 59 258–265. 10.1111/j.1532-5415.2010.03277.x

Source: PubMed

3
订阅