Cancer risk in East Asian patients associated with acquired haemolytic anaemia: a nationwide population-based cohort study

Victor C Kok, Fung-Chang Sung, Chia-Hung Kao, Che-Chen Lin, Chun-Hung Tseng, Victor C Kok, Fung-Chang Sung, Chia-Hung Kao, Che-Chen Lin, Chun-Hung Tseng

Abstract

Background: This study investigated whether patients with acquired haemolytic anaemia (AHA) would have elevated cancer risk including that for non-haematological solid tumours. We further examined whether the cancer risk would be different between patients with autoimmune type AHA (AIHA) and patients of non-AIHA.

Methods: Using nationwide population-based insurance claims data of Taiwan we identified a cohort of patients with AHA with no pre-existing cancer, (n = 3902) and a comparison cohort (n = 39020) without AHA, frequency-matched by gender, age, urbanization of residency and diagnosis date. Incidence and Cox method estimated adjusted hazard ratios (aHR) of cancers controlling covariates by the end of 2010 were calculated. Risks between patients with AIHA and non-AIHA were compared. Sensitivity analysis was carried out to measure the risk of cancer between patients with and without AHA by follow-up years.

Results: Patients with AHA had a 90% greater incidence of cancer than controls, with an aHR of 1.78 (95% confidence interval (CI), 1.50-2.12)]. The overall aHRs of cancer for patients with AIHA and non-AIHA were 2.01 (95% CI, 1.56-2.59) and 1.87 (95% CI, 1.53-2.29), respectively, compared with the comparison cohort. The aHRs for lymphatic-haematopoietic malignancy were 19.5 and 9.59 in the AIHA and non-AIHA cohorts, respectively. No hazard of colorectal, lung, liver or breast cancer was significant.

Conclusions: There is a near 2-fold elevated risk for subsequent cancer in patients with AHA, particularly for lymphatic-haematopoietic malignancy, which is much greater for patients with AIHA than non-AIHA. These findings can help clinicians decide patient-centred personalized long-term management.

Figures

Fig. 1
Fig. 1
Study flowchart showing steps for the selection of target populations, exclusion criteria and matching of the comparison cohort in the nationwide population-based cohort study
Fig. 2
Fig. 2
The cumulative incidence of cancer in the study cohorts

References

    1. Smedby KE, Askling J, Mariette X, Baecklund E. Autoimmune and inflammatory disorders and risk of malignant lymphomas--an update. J Intern Med. 2008;264(6):514–527. doi: 10.1111/j.1365-2796.2008.02029.x.
    1. Sallah S, Wan JY, Hanrahan LR. Future development of lymphoproliferative disorders in patients with autoimmune hemolytic anemia. Clin Cancer Res. 2001;7(4):791–794.
    1. Landgren O, Gridley G, Check D, Caporaso NE, Morris Brown L. Acquired immune-related and inflammatory conditions and subsequent chronic lymphocytic leukaemia. Br J Haematol. 2007;139(5):791–798. doi: 10.1111/j.1365-2141.2007.06859.x.
    1. Franks AL, Slansky JE. Multiple Associations Between a Broad Spectrum of Autoimmune Diseases, Chronic Inflammatory Diseases and Cancer. Anticancer Res. 2012;32(4):1119–1136.
    1. Ekstrom Smedby K, Vajdic CM, Falster M, Engels EA, Martinez-Maza O, Turner J, et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. Blood. 2008;111(8):4029–4038. doi: 10.1182/blood-2007-10-119974.
    1. Anderson LA, Gadalla S, Morton LM, Landgren O, Pfeiffer R, Warren JL, et al. Population-based study of autoimmune conditions and the risk of specific lymphoid malignancies. Int J Cancer J. 2009;125(2):398–405. doi: 10.1002/ijc.24287.
    1. Landgren O, Engels EA, Pfeiffer RM, Gridley G, Mellemkjaer L, Olsen JH, et al. Autoimmunity and susceptibility to Hodgkin lymphoma: a population-based case–control study in Scandinavia. J Natl Cancer Inst. 2006;98(18):1321–1330. doi: 10.1093/jnci/djj361.
    1. Mellemkjaer L, Andersen V, Linet MS, Gridley G, Hoover R, Olsen JH. Non-Hodgkin’s lymphoma and other cancers among a cohort of patients with systemic lupus erythematosus. Arthritis Rheum. 1997;40(4):761–768. doi: 10.1002/art.1780400424.
    1. Domiciano DS, Shinjo SK. Autoimmune hemolytic anemia in systemic lupus erythematosus: association with thrombocytopenia. Clin Rheumatol. 2010;29(12):1427–1431. doi: 10.1007/s10067-010-1479-2.
    1. Dey D, Kenu E, Isenberg DA. Cancer complicating systemic lupus erythematosus--a dichotomy emerging from a nested case–control study. Lupus. 2013;22(9):919–927. doi: 10.1177/0961203313497118.
    1. Kao CH, Sun LM, Chen PC, Lin MC, Liang JA, Muo CH, et al. A population-based cohort study in Taiwan--use of insulin sensitizers can decrease cancer risk in diabetic patients? Annals Oncology. 2013;24(2):523–530. doi: 10.1093/annonc/mds472.
    1. Kao CH, Sun LM, Liang JA, Chang SN, Sung FC, Muo CH. Relationship of zolpidem and cancer risk: a Taiwanese population-based cohort study. Mayo Clin Proc. 2012;87(5):430–436. doi: 10.1016/j.mayocp.2012.02.012.
    1. Kok VC, Horng JT, Huang JL, Yeh KW, Gau JJ, Chang CW, et al. Population-based cohort study on the risk of malignancy in East Asian children with juvenile idiopathic arthritis. BMC Cancer. 2014;14:634. doi: 10.1186/1471-2407-14-634.
    1. Kok VC, Tsai HJ, Su CF, Lee CK. The Risks for Ovarian, Endometrial, Breast, Colorectal, and Other Cancers in Women With Newly Diagnosed Endometriosis or Adenomyosis: A Population-Based Study. Int J Gynecol Cancer. 2015;25(6):968–976. doi: 10.1097/IGC.0000000000000454.
    1. Lo SF, Chang SN, Muo CH, Chen SY, Liao FY, Dee SW, et al. Modest increase in risk of specific types of cancer types in type 2 diabetes mellitus patients. Int J Cancer. 2013;132(1):182–188. doi: 10.1002/ijc.27597.
    1. Liu CY, Hung YT, Chuang YL, Chen YJ, Weng WS, Liu JS, et al. Incorporating development stratification of Taiwan townships into sampling design of large scale health interview survey. J Health Manag. 2006;14:1–22.
    1. Anderson LA, Pfeiffer RM, Landgren O, Gadalla S, Berndt SI, Engels EA. Risks of myeloid malignancies in patients with autoimmune conditions. Br J Cancer. 2009;100(5):822–828. doi: 10.1038/sj.bjc.6604935.
    1. Nakamura K, Wada K, Tamai Y, Tsuji M, Kawachi T, Hori A, et al. Diabetes mellitus and risk of cancer in Takayama: a population-based prospective cohort study in Japan. Cancer Sci. 2013;104(10):1362–1367. doi: 10.1111/cas.12235.
    1. Sorensen HT, Friis S, Olsen JH, Thulstrup AM, Mellemkjaer L, Linet M, et al. Risk of liver and other types of cancer in patients with cirrhosis: a nationwide cohort study in Denmark. Hepatology (Baltimore, Md) 1998;28(4):921–925. doi: 10.1002/hep.510280404.
    1. Su FH, Chang SN, Chen PC, Sung FC, Huang SF, Chiou HY, et al. Positive association between hepatitis C infection and oral cavity cancer: a nationwide population-based cohort study in Taiwan. PLoS One. 2012;7(10):e48109. doi: 10.1371/journal.pone.0048109.
    1. Su FH, Chang SN, Chen PC, Sung FC, Su CT, Yeh CC. Association between chronic viral hepatitis infection and breast cancer risk: a nationwide population-based case–control study. BMC Cancer. 2011;11:495. doi: 10.1186/1471-2407-11-495.
    1. Wong G, Hayen A, Chapman JR, Webster AC, Wang JJ, Mitchell P, et al. Association of CKD and cancer risk in older people. J Am Soc Nephrol. 2009;20(6):1341–1350. doi: 10.1681/ASN.2008090998.
    1. Maroeska Te Loo D, Bosma N, Van Hinsbergh V, Span P, De Waal R, Clarijs R, et al. Elevated levels of vascular endothelial growth factor in serum of patients with D+ HUS. Pediatric Nephrology. 2004;19(7):754–760. doi: 10.1007/s00467-004-1475-3.
    1. Page AV, Tarr PI, Watkins SL, Rajwans N, Petruzziello-Pellegrini TN, Marsden PA, et al. Dysregulation of angiopoietin 1 and 2 in Escherichia coli O157:H7 infection and the hemolytic-uremic syndrome. J Infect Dis. 2013;208(6):929–933. doi: 10.1093/infdis/jit268.
    1. Ray P, Acheson D, Chitrakar R, Cnaan A, Gibbs K, Hirschman GH, et al. Basic fibroblast growth factor among children with diarrhea-associated hemolytic uremic syndrome. J Am Soc Nephrology. 2002;13(3):699–707.
    1. Kapa S, Beckman TJ, Cha SS, Meyer JA, Robinet CA, Bucher DK, et al. A reliable billing method for internal medicine resident clinics: financial implications for an academic medical center. J Graduate Med Education. 2010;2(2):181–187. doi: 10.4300/JGME-D-10-00001.1.

Source: PubMed

3
订阅