Nasal gene expression differentiates COPD from controls and overlaps bronchial gene expression

Ilse M Boudewijn, Alen Faiz, Katrina Steiling, Erica van der Wiel, Eef D Telenga, Susan J M Hoonhorst, Nick H T Ten Hacken, Corry-Anke Brandsma, Huib A M Kerstjens, Wim Timens, Irene H Heijink, Marnix R Jonker, Harold G de Bruin, J Sebastiaan Vroegop, Henk R Pasma, Wim G Boersma, Pascal Wielders, Frank van den Elshout, Khaled Mansour, Avrum Spira, Marc E Lenburg, Victor Guryev, Dirkje S Postma, Maarten van den Berge, Ilse M Boudewijn, Alen Faiz, Katrina Steiling, Erica van der Wiel, Eef D Telenga, Susan J M Hoonhorst, Nick H T Ten Hacken, Corry-Anke Brandsma, Huib A M Kerstjens, Wim Timens, Irene H Heijink, Marnix R Jonker, Harold G de Bruin, J Sebastiaan Vroegop, Henk R Pasma, Wim G Boersma, Pascal Wielders, Frank van den Elshout, Khaled Mansour, Avrum Spira, Marc E Lenburg, Victor Guryev, Dirkje S Postma, Maarten van den Berge

Abstract

Background: Nasal gene expression profiling is a promising method to characterize COPD non-invasively. We aimed to identify a nasal gene expression profile to distinguish COPD patients from healthy controls. We investigated whether this COPD-associated gene expression profile in nasal epithelium is comparable with the profile observed in bronchial epithelium.

Methods: Genome wide gene expression analysis was performed on nasal epithelial brushes of 31 severe COPD patients and 22 controls, all current smokers, using Affymetrix Human Gene 1.0 ST Arrays. We repeated the gene expression analysis on bronchial epithelial brushes in 2 independent cohorts of mild-to-moderate COPD patients and controls.

Results: In nasal epithelium, 135 genes were significantly differentially expressed between severe COPD patients and controls, 21 being up- and 114 downregulated in COPD (false discovery rate < 0.01). Gene Set Enrichment Analysis (GSEA) showed significant concordant enrichment of COPD-associated nasal and bronchial gene expression in both independent cohorts (FDRGSEA < 0.001).

Conclusion: We identified a nasal gene expression profile that differentiates severe COPD patients from controls. Of interest, part of the nasal gene expression changes in COPD mimics differentially expressed genes in the bronchus. These findings indicate that nasal gene expression profiling is potentially useful as a non-invasive biomarker in COPD.

Trial registration: ClinicalTrials.gov registration number NCT01351792 (registration date May 10, 2011), ClinicalTrials.gov registration number NCT00848406 (registration date February 19, 2009), ClinicalTrials.gov registration number NCT00807469 (registration date December 11, 2008).

Keywords: Bronchial epithelium; COPD; Genome wide gene expression; Microarray; Nasal epithelium.

Conflict of interest statement

Ethics approval and consent to participate

Identification cohort: The ethical committee of the University Medical Center Groningen (Medisch Ethische Toetsingscommisie) approved the study and all included subjects gave their written informed consent.

Comparator cohort 1: Institutional review board approval was obtained from the participating institutions and all subject gave their written informed consent.

Comparator cohort 2: The ethical committee of the University Medical Center Groningen approved the study and all included subjects gave their written informed consent.

Consent for publication

Not applicable.

Competing interests

MvdB reports research grants paid to the University from Chiesi, GlaxoSmithKline, TEVA and AstraZeneca. HAMK reports fees paid to the University for consultancies/advisory boards and fees per patient for recruitment from GlaxoSmithKline, Boehringer Ingelheim and Novartis. WT reports fees paid to the University from Pfizer, GlaxoSmithKline, Chiesi, Roche Diagnostics/Ventana, Biotest, Merck Sharp Dohme, Novartis, Lilly Oncology and a grant from the Dutch Asthma Fund. PW reports personal fees from GlaxoSmithKline, Boehringer Ingelheim, AstraZeneca and a grant from GlaxoSmithKline. MEL reports grants from NIH/NHLBI during the conduct of the study; in addition, MEL has a patent US PTO 14/406,607 pending. DSP reports consultancy fees or research grants paid to the University from Astra Zeneca, Chiesi, Genentec, GlaxoSmithKline, Roche, TEVA, Takeda and Boehringer Ingelheim. KS has a patent pending for the Boston University: “Biomarkers of COPD disease activity”. IMB, AF, EvdW, EDT, SJMH, NHTtH, CAB, IHH, MRJ, HGdB, JSV, HRP, WB, FvdE, KM, AS and VG have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Heatmap of gene expression significantly associated with COPD status. Between COPD and controls, 135 genes were significantly differentially expressed: 114 genes were significantly down- and 21 genes were significantly upregulated in COPD (FDR 

Fig. 2

Gene set enrichment analysis showing…

Fig. 2

Gene set enrichment analysis showing that nasal gene expression associated with COPD resembles…

Fig. 2
Gene set enrichment analysis showing that nasal gene expression associated with COPD resembles bronchial gene expression. The colored bars represent the ranked t-values of the association of bronchial gene expression with COPD of ~20.000 genes: red represents a positive association whereas blue represents a negative association with COPD. The black vertical lines each represent a significantly differentially expressed gene in nasal epithelium, which are ordered across the ranked bronchial genes. The height of the black lines represents the running enrichment scores of the gene set enrichment analysis. Significant differentially expressed genes at a FDR cut-off of a Upregulated genes in nasal epithelium (n = 21) were significantly enriched among upregulated genes in bronchial epithelium in cohort 1, b Upregulated genes in nasal epithelium (n = 21) were significantly enriched among upregulated genes in bronchial epithelium in cohort 2, c Downregulated genes in nasal epithelium (n = 114) were significantly enriched among downregulated genes in bronchial epithelium in cohort 1, d Downregulated genes in nasal epithelium (n = 114) were significantly enriched among genes downregulated in bronchial epithelium in cohort 2
Fig. 2
Fig. 2
Gene set enrichment analysis showing that nasal gene expression associated with COPD resembles bronchial gene expression. The colored bars represent the ranked t-values of the association of bronchial gene expression with COPD of ~20.000 genes: red represents a positive association whereas blue represents a negative association with COPD. The black vertical lines each represent a significantly differentially expressed gene in nasal epithelium, which are ordered across the ranked bronchial genes. The height of the black lines represents the running enrichment scores of the gene set enrichment analysis. Significant differentially expressed genes at a FDR cut-off of a Upregulated genes in nasal epithelium (n = 21) were significantly enriched among upregulated genes in bronchial epithelium in cohort 1, b Upregulated genes in nasal epithelium (n = 21) were significantly enriched among upregulated genes in bronchial epithelium in cohort 2, c Downregulated genes in nasal epithelium (n = 114) were significantly enriched among downregulated genes in bronchial epithelium in cohort 1, d Downregulated genes in nasal epithelium (n = 114) were significantly enriched among genes downregulated in bronchial epithelium in cohort 2

References

    1. Halbert RJ, Natoli JL, Gano A, Badamgarav E, Buist AS, Mannino DM. Global burden of COPD: systematic review and meta-analysis. Eur Respir J. 2006;28:523–532. doi: 10.1183/09031936.06.00124605.
    1. World Health Organization. Global health observatory (GHO) data; top 10 causes of death. [Accessed August 2017].
    1. Spira A, Beane J, Shah V, Liu G, Schembri F, Yang X, et al. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci U S A. 2004;101:10143–10148. doi: 10.1073/pnas.0401422101.
    1. Steiling K, van den Berge M, Hijazi K, Florido R, Campbell J, Liu G, et al. A dynamic bronchial airway gene expression signature of chronic obstructive pulmonary disease and lung function impairment. Am J Respir Crit Care Med. 2013;187:933–942. doi: 10.1164/rccm.201208-1449OC.
    1. Zhang X, Sebastiani P, Liu G, Schembri F, Zhang X, Dumas YM, et al. Similarities and differences between smoking-related gene expression in nasal and bronchial epithelium. Physiol Genomics. 2010;41:1–8. doi: 10.1152/physiolgenomics.00167.2009.
    1. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–338. doi: 10.1183/09031936.05.00034805.
    1. Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005;26:511–522. doi: 10.1183/09031936.05.00035005.
    1. van der Molen T, Willemse BW, Schokker S, ten Hacken NH, Postma DS, Juniper EF. Development, validity and responsiveness of the clinical COPD questionnaire. Health Qual Life Outcomes. 2003;1:13. doi: 10.1186/1477-7525-1-13.
    1. Sridhar S, Schembri F, Zeskind J, Shah V, Gustafson AM, Steiling K, et al. Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium. BMC Genomics. 2008;9:259–2164. doi: 10.1186/1471-2164-9-259.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57:289–900.
    1. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–15550. doi: 10.1073/pnas.0506580102.
    1. Lo Tam Loi AT, Hoonhorst SJ, Franciosi L, Bischoff R, Hoffmann RF, Heijink I, et al. Acute and chronic inflammatory responses induced by smoking in individuals susceptible and non-susceptible to development of COPD: from specific disease phenotyping towards novel therapy. Protocol of a cross-sectional study. BMJ Open. 2013;3 10.1136/bmjopen-2012-002178. Print 2013
    1. Hoonhorst S, Timens W, Koenderman L, Lo Tam Loi AT, Lammers JW, Boezen H, et al. Increased activation of blood neutrophils after cigarette smoking in young individuals susceptible to COPD. Respir Res. 2014;15:121. doi: 10.1186/s12931-014-0121-2.
    1. Obeidat M, Nie Y, Fishbane N, Li X, Bosse Y, Joubert P, et al. Integrative genomics of emphysema-associated genes reveals potential disease biomarkers. Am J Respir Cell Mol Biol. 2017;57:411–418. doi: 10.1165/rcmb.2016-0284OC.
    1. Leikauf GD, Borchers MT, Prows DR, Simpson LG. Mucin apoprotein expression in COPD. Chest. 2002;121:166S–182S. doi: 10.1378/chest.121.5_suppl.166S.
    1. Kim KC. Role of epithelial mucins during airway infection. Pulm Pharmacol Ther. 2012;25:415–419. doi: 10.1016/j.pupt.2011.12.003.
    1. Choi IW, Ahn do W, Choi JK, Cha HJ, Ock MS, You E, et al. Regulation of airway inflammation by G-protein regulatory motif peptides of AGS3 protein. Sci Rep. 2016;6:27054. doi: 10.1038/srep27054.
    1. Ishikawa N, Mazur W, Toljamo T, Vuopala K, Ronty M, Horimasu Y, et al. Ageing and long-term smoking affects KL-6 levels in the lung, induced sputum and plasma. BMC Pulm Med. 2011;11:22–2466. doi: 10.1186/1471-2466-11-22.
    1. Wang G, Xu Z, Wang R, Al-Hijji M, Salit J, Strulovici-Barel Y, et al. Genes associated with MUC5AC expression in small airway epithelium of human smokers and non-smokers. BMC Med Genet. 2012;5:21–8794.
    1. Chen Q, Lee CE, Denard B, Ye J. Sustained induction of collagen synthesis by TGF-beta requires regulated intramembrane proteolysis of CREB3L1. PLoS One. 2014;9:e108528. doi: 10.1371/journal.pone.0108528.
    1. Ramos FL, Krahnke JS, Kim V. Clinical issues of mucus accumulation in COPD. Int J Chron Obstruct Pulmon Dis. 2014;9:139–150.
    1. Pini L, Pinelli V, Modina D, Bezzi M, Tiberio L, Tantucci C. Central airways remodeling in COPD patients. Int J Chron Obstruct Pulmon Dis. 2014;9:927–932. doi: 10.2147/COPD.S52478.
    1. Fliegauf M, Horvath J, von Schnakenburg C, Olbrich H, Muller D, Thumfart J, et al. Nephrocystin specifically localizes to the transition zone of renal and respiratory cilia and photoreceptor connecting cilia. J Am Soc Nephrol. 2006;17:2424–2433. doi: 10.1681/ASN.2005121351.
    1. McClintock TS, Glasser CE, Bose SC, Bergman DA. Tissue expression patterns identify mouse cilia genes. Physiol Genomics. 2008;32:198–206. doi: 10.1152/physiolgenomics.00128.2007.
    1. Firat-Karalar EN, Sante J, Elliott S, Stearns T. Proteomic analysis of mammalian sperm cells identifies new components of the centrosome. J Cell Sci. 2014;127:4128–4133. doi: 10.1242/jcs.157008.
    1. Yaghi A, Dolovich MB. Airway epithelial cell cilia and obstructive lung disease. Cell. 2016;5:E40. doi: 10.3390/cells5040040.
    1. Hobbs BD, de Jong K, Lamontagne M, Bosse Y, Shrine N, Artigas MS, et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat Genet. 2017;49:426–432. doi: 10.1038/ng.3752.
    1. Brooke MA, Nitoiu D, Kelsell DP. Cell-cell connectivity: desmosomes and disease. J Pathol. 2012;226:158–171. doi: 10.1002/path.3027.
    1. Holz O, Zuhlke I, Jaksztat E, Muller KC, Welker L, Nakashima M, et al. Lung fibroblasts from patients with emphysema show a reduced proliferation rate in culture. Eur Respir J. 2004;24:575–579. doi: 10.1183/09031936.04.00143703.
    1. Noordhoek JA, Postma DS, Chong LL, Vos JT, Kauffman HF, Timens W, et al. Different proliferative capacity of lung fibroblasts obtained from control subjects and patients with emphysema. Exp Lung Res. 2003;29:291–302. doi: 10.1080/01902140303789.
    1. Perotin JM, Adam D, Vella-Boucaud J, Delepine G, Sandu S, Jonvel AC, et al. Delay of airway epithelial wound repair in COPD is associated with airflow obstruction severity. Respir Res. 2014;15:151–014. doi: 10.1186/s12931-014-0151-9.
    1. Wopereis S, Lefeber DJ, Morava E, Wevers RA. Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: a review. Clin Chem. 2006;52:574–600. doi: 10.1373/clinchem.2005.063040.
    1. Allende ML, Proia RL. Simplifying complexity: genetically resculpting glycosphingolipid synthesis pathways in mice to reveal function. Glycoconj J. 2014;31:613–622. doi: 10.1007/s10719-014-9563-5.
    1. Telenga ED, Hoffmann RF, Ruben T, Hoonhorst SJ, Willemse BW, van Oosterhout AJ, et al. Untargeted lipidomic analysis in chronic obstructive pulmonary disease. Uncovering sphingolipids. Am J Respir Crit Care Med. 2014;190:155–164. doi: 10.1164/rccm.201312-2210OC.
    1. Bahr TM, Hughes GJ, Armstrong M, Reisdorph R, Coldren CD, Edwards MG, et al. Peripheral blood mononuclear cell gene expression in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2013;49:316–323. doi: 10.1165/rcmb.2012-0230OC.
    1. Bowler RP, Jacobson S, Cruickshank C, Hughes GJ, Siska C, Ory DS, et al. Plasma Sphingolipids associated with COPD phenotypes. Am J Respir Crit Care Med. 2014;191(3):275–284. doi: 10.1164/rccm.201410-1771OC.
    1. Hirakawa M, Takimoto R, Tamura F, Yoshida M, Ono M, Murase K, et al. Fucosylated TGF-beta receptors transduces a signal for epithelial-mesenchymal transition in colorectal cancer cells. Br J Cancer. 2014;110:156–163. doi: 10.1038/bjc.2013.699.
    1. Okajima T, Irvine KD. Regulation of notch signaling by o-linked fucose. Cell. 2002;111:893–904. doi: 10.1016/S0092-8674(02)01114-5.
    1. Delmotte P, Degroote S, Lafitte JJ, Lamblin G, Perini JM, Roussel P. Tumor necrosis factor alpha increases the expression of glycosyltransferases and sulfotransferases responsible for the biosynthesis of sialylated and/or sulfated Lewis x epitopes in the human bronchial mucosa. J Biol Chem. 2002;277:424–431. doi: 10.1074/jbc.M109958200.
    1. O'Connell MJ, Walworth NC, Carr AM. The G2-phase DNA-damage checkpoint. Trends Cell Biol. 2000;10:296–303. doi: 10.1016/S0962-8924(00)01773-6.
    1. Yao NY, Johnson A, Bowman GD, Kuriyan J, O'Donnell M. Mechanism of proliferating cell nuclear antigen clamp opening by replication factor C. J Biol Chem. 2006;281:17528–17539. doi: 10.1074/jbc.M601273200.
    1. Qian L, Luo Q, Zhao X, Huang J. Pathways enrichment analysis for differentially expressed genes in squamous lung cancer. Pathol Oncol Res. 2014;20:197–202. doi: 10.1007/s12253-013-9685-2.
    1. Kim YR, Song SY, Kim SS, An CH, Lee SH, Yoo NJ. Mutational and expressional analysis of RFC3, a clamp loader in DNA replication, in gastric and colorectal cancers. Hum Pathol. 2010;41:1431–1437. doi: 10.1016/j.humpath.2010.03.006.

Source: PubMed

3
订阅