TS-EUROTRAIN: A European-Wide Investigation and Training Network on the Etiology and Pathophysiology of Gilles de la Tourette Syndrome

Natalie J Forde, Ahmad S Kanaan, Joanna Widomska, Shanmukha S Padmanabhuni, Ester Nespoli, John Alexander, Juan I Rodriguez Arranz, Siyan Fan, Rayan Houssari, Muhammad S Nawaz, Francesca Rizzo, Luca Pagliaroli, Nuno R Zilhäo, Tamas Aranyi, Csaba Barta, Tobias M Boeckers, Dorret I Boomsma, Wim R Buisman, Jan K Buitelaar, Danielle Cath, Andrea Dietrich, Nicole Driessen, Petros Drineas, Michelle Dunlap, Sarah Gerasch, Jeffrey Glennon, Bastian Hengerer, Odile A van den Heuvel, Cathrine Jespersgaard, Harald E Möller, Kirsten R Müller-Vahl, Thaïra J C Openneer, Geert Poelmans, Petra J W Pouwels, Jeremiah M Scharf, Hreinn Stefansson, Zeynep Tümer, Dick J Veltman, Ysbrand D van der Werf, Pieter J Hoekstra, Andrea Ludolph, Peristera Paschou, Natalie J Forde, Ahmad S Kanaan, Joanna Widomska, Shanmukha S Padmanabhuni, Ester Nespoli, John Alexander, Juan I Rodriguez Arranz, Siyan Fan, Rayan Houssari, Muhammad S Nawaz, Francesca Rizzo, Luca Pagliaroli, Nuno R Zilhäo, Tamas Aranyi, Csaba Barta, Tobias M Boeckers, Dorret I Boomsma, Wim R Buisman, Jan K Buitelaar, Danielle Cath, Andrea Dietrich, Nicole Driessen, Petros Drineas, Michelle Dunlap, Sarah Gerasch, Jeffrey Glennon, Bastian Hengerer, Odile A van den Heuvel, Cathrine Jespersgaard, Harald E Möller, Kirsten R Müller-Vahl, Thaïra J C Openneer, Geert Poelmans, Petra J W Pouwels, Jeremiah M Scharf, Hreinn Stefansson, Zeynep Tümer, Dick J Veltman, Ysbrand D van der Werf, Pieter J Hoekstra, Andrea Ludolph, Peristera Paschou

Abstract

Gilles de la Tourette Syndrome (GTS) is characterized by the presence of multiple motor and phonic tics with a fluctuating course of intensity, frequency, and severity. Up to 90% of patients with GTS present with comorbid conditions, most commonly attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD), thus providing an excellent model for the exploration of shared etiology across disorders. TS-EUROTRAIN (FP7-PEOPLE-2012-ITN, Grant Agr.No. 316978) is a Marie Curie Initial Training Network (http://ts-eurotrain.eu) that aims to elucidate the complex etiology of the onset and clinical course of GTS, investigate the neurobiological underpinnings of GTS and related disorders, translate research findings into clinical applications, and establish a pan-European infrastructure for the study of GTS. This includes the challenges of (i) assembling a large genetic database for the evaluation of the genetic architecture with high statistical power; (ii) exploring the role of gene-environment interactions including the effects of epigenetic phenomena; (iii) employing endophenotype-based approaches to understand the shared etiology between GTS, OCD, and ADHD; (iv) establishing a developmental animal model for GTS; (v) gaining new insights into the neurobiological mechanisms of GTS via cross-sectional and longitudinal neuroimaging studies; and (vi) partaking in outreach activities including the dissemination of scientific knowledge about GTS to the public. Fifteen partners from academia and industry and 12 PhD candidates pursue the project. Here, we aim to share the design of an interdisciplinary project, showcasing the potential of large-scale collaborative efforts in the field of GTS. Our ultimate aims are to elucidate the complex etiology and neurobiological underpinnings of GTS, translate research findings into clinical applications, and establish Pan-European infrastructure for the study of GTS and associated disorders.

Keywords: Gilles de la Tourette Syndrome; Initial Training Network; animal models; etiology; genetics; neuroimaging; tourette disorder.

Figures

Figure 1
Figure 1
Network of reported candidate genes associated with GTS. This image was produced (by JW) with Ingenuity pathway analysis software and shows how the proteins encoded by the candidate genes reported to be associated with GTS are linked with each other. Please see legend for description of what each symbol and color represents. ADRA1A, adrenoceptor alpha 1A; ADRA2A, adrenoceptor alpha 2A; ADRA2C, adrenoceptor alpha 2C; BTBD9, BTB (POZ) domain containing 9; CaMKII, calcium/calmodulin-dependent protein kinase II; CCT8, chaperonin containing TCP1, subunit 8 (theta); CNTNAP2, contactin-associated protein-like 2; COMT, catechol-O-methyltransferase; CTNNA3, catenin (cadherin-associated protein), alpha 3; CTTNBP2, contactin binding protein 2; CUL3, cullin 3; DBH, dopamine beta-hydroxylase (dopamine beta-monooxygenase); DLGAP3, discs; large (Drosophila) homolog-associated protein 3; DRD1, dopamine receptor D1, DRD2, dopamine receptor D2, DRD3, dopamine receptor D3, DRD4, dopamine receptor D4, ERK 1/2, extracellular signal-regulated kinases 1/2; HDC, histidine decarboxylase, HNF4A, hepatocyte nuclear factor 4 alpha; HTR2A, 5-hydroxytryptamine (serotonin) receptor 2A; G protein-coupled; HTR2C, 5-hydroxytryptamine (serotonin) receptor 2C; G protein-coupled; IL1RN, interleukin 1 receptor antagonist; KCNE1, potassium channel voltage gated subfamily E regulatory beta subunit 1; KCNE2, potassium channel, voltage gated subfamily E regulatory beta subunit 2; LHX6, LIM homeobox 6; MAOA, monoamine oxidase A; MRPL21, mitochondrial ribosomal protein L21; MRPL3, mitochondrial ribosomal protein L3; MYC, v-myc avian myelocytomatosis viral oncogene homolog; NLGN4X, neuroligin 4, X-linked; NRXN1, neurexin 1; OFCC1, orofacial cleft 1 candidate 1; PPARA, peroxisome proliferator-activated receptor alpha; RCAN1, regulator of calcineurin 1; PSEN1/2, presenilin 1/2; SLC1A3, solute carrier family 1 (glial high affinity glutamate transporter), member 3; SLC6A3, solute carrier family 6 (neurotransmitter transporter); member 3; SLC6A4, solute carrier family 6 (neurotransmitter transporter), member 4, SLITRK1, SLIT, and NTRK-like family, member 1; TPH2, tryptophan hydroxylase 2; YWHAB, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta.
Figure 2
Figure 2
Major neurotransmitter pathways related to GTS pathophysiology. Simplified schematic illustration of the major neurotransmitter systems reported and hypothesized to be involved in GTS pathophysiology. Other neuromodulatory systems that have been implicated include the cholinergic, histaminergic, and endocannabinoid systems. The figure was adapted based on information from Singer (2013) and Schumann et al. (2010). (5-HT, serotonergic; ACC, anterior cingulate cortex; Amygd, amygdala; Caud, Caudate nucleus; DA, dopaminergic; DR, dorsal raphe nucleus; GABA, gamma-aminobutyric acid; Glu, glutamatergic; GP, globus pallidus; MCC, mid cingulate cortex; NAcc, nucleus accumbens; OFC, orbitofrontal cortex; PCC, posterior cingulate cortex; PFC, prefrontal cortex; Put, putamen; RN, raphe nucleus; SMA, supplementary motor area; SN, substantia nigra; Tha, thalamus; VM-PFC, ventromedial prefrontal cortex; VTA: ventral tegmental area).

References

    1. Abelson J. F., Kwan K. Y., O'Roak B. J., Baek D. Y., Stillman A. A., Morgan T. M., et al. . (2005). Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science 310, 317–320. 10.1126/science.1116502
    1. American Psychiatric Association (2013). Neurodevelopmental Disorders, in Diagnostic and Statistical Manual of Mental Disorders DSM Library (Washington, DC: American Psychiatric Association; ), 81–82.
    1. Bertelsen B., Stefánsson H., Riff Jensen L., Melchior L., Mol Debes N., Groth C., et al. . (2016). Association of AADAC deletion and Gilles de la tourette syndrome in a large european cohort. Biol. Psychiatry 79, 383–391. 10.1016/j.biopsych.2015.08.027
    1. Bloch M. H., Leckman J. F. (2009). Clinical course of Tourette syndrome. J. Psychosom. Res. 67, 497–501. 10.1016/j.jpsychores.2009.09.002
    1. Bronfeld M., Yael D., Belelovsky K., Bar-Gad I. (2013). Motor tics evoked by striatal disinhibition in the rat. Front. Syst. Neurosci. 7:50 10.3389/fnsys.2013.00050
    1. Buse J., Schoenefeld K., Münchau A., Roessner V. (2013). Neuromodulation in Tourette syndrome: dopamine and beyond. Neurosci. Biobehav. Rev. 37, 1069–1084. 10.1016/j.neubiorev.2012.10.004
    1. Cenci M. A., Lee C. S., Björklund A. (1998). L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur. J. Neurosci. 10, 2694–2706. 10.1046/j.1460-9568.1998.00285.x
    1. Debes N. M. M. M., Hjalgrim H., Skov L. (2010). Predictive factors for familiarity in a Danish clinical cohort of children with Tourette syndrome. Eur. J. Med. Genet. 53, 171–178. 10.1016/j.ejmg.2010.05.001
    1. Delgado M. S., Camprubí C., Tümer Z., Martínez F., Milà M., Monk D. (2014). Screening individuals with intellectual disability, autism and Tourette's syndrome for KCNK9 mutations and aberrant DNA methylation within the 8q24 imprinted cluster. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 165, 472–478. 10.1002/ajmg.b.32250
    1. Fernandez T. V., Sanders S. J., Yurkiewicz I. R., Ercan-Sencicek A. G., Kim Y. S., Fishman D. O., et al. . (2012). Rare copy number variants in tourette syndrome disrupt genes in histaminergic pathways and overlap with autism. Biol. Psychiatry 71, 392–402. 10.1016/j.biopsych.2011.09.034
    1. Freeman R. D., Fast D. K., Burd L., Kerbeshian J., Robertson M. M., Sandor P. (2000). An international perspective on Tourette syndrome: selected findings from 3500 individuals in 22 countries. Dev. Med. Child Neurol. 42, 436–447. 10.1111/j.1469-8749.2000.tb00346.x
    1. Ganos C., Roessner V., Münchau A. (2013). The functional anatomy of Gilles de la Tourette syndrome. Neurosci. Biobehav. Rev. 37, 1050–1062. 10.1016/j.neubiorev.2012.11.004
    1. Georgitsi M., Willsey J., Mathews C., State M., Scharf J., Paschou P. (2016). The genetic etiology of tourette syndrome: large-scale collaborative efforts on the precipice of discovery. Front. Neurosci. 10:351 10.3389/fnins.2016.00351
    1. Goldberg A. D., Allis C. D., Bernstein E. (2007). Epigenetics: a landscape takes shape. Cell 128, 635–638. 10.1016/j.cell.2007.02.006
    1. Gomez L., Wigg K., Zhang K., Lopez L., Sandor P., Malone M., et al. . (2014). Association of the KCNJ5 gene with tourette syndrome and attention-deficit/hyperactivity disorder. Genes Brain Behav. 13, 535–542. 10.1111/gbb.12141
    1. Gunther J., Tian Y., Stamova B., Lit L., Corbett B., Ander B., et al. . (2012). Catecholamine-related gene expression in blood correlates with tic severity in tourette syndrome. Psychiatry Res. 200, 593–601. 10.1016/j.psychres.2012.04.034
    1. Hirschtritt M. E., Lee P. C., Pauls D. L., Dion Y., Grados M. A., Illmann C., et al. . (2015). Lifetime prevalence, age of risk, and genetic relationships of comorbid psychiatric disorders in tourette syndrome. JAMA Psychiatry 72, 325–333. 10.1001/jamapsychiatry.2014.2650
    1. Kawohl W., Schneider F., Vernaleken I., Neuner I. (2009). Aripiprazole in the pharmacotherapy of Gilles de la Tourette syndrome in adult patients. World J. Biol. psychiatry 10, 827–831. 10.1080/15622970701762544
    1. Leckman J. F., Zhang H., Vitale A., Lahnin F., Lynch K., Bondi C., et al. . (1998). Course of tic severity in Tourette syndrome: the first two decades. Pediatrics 102, 14–19. 10.1542/peds.102.1.14
    1. Lennington J. B., Coppola G., Kataoka-Sasaki Y., Fernandez T. V., Palejev D., Li Y., et al. . (2016). Transcriptome analysis of the human striatum in tourette syndrome. Biol. Psychiatry 79, 372–382. 10.1016/j.biopsych.2014.07.018
    1. Liao I. H., Corbett B. A., Gilbert D. L., Bunge S. A., Sharp F. R. (2010). Blood gene expression correlated with tic severity in medicated and unmedicated patients with Tourette Syndrome. Pharmacogenomics 11, 1733–1741. 10.2217/pgs.10.160
    1. Lit L., Enstrom A., Sharp F. R., Gilbert D. L. (2009). Age-related gene expression in Tourette syndrome. J. Psychiatr. Res. 43, 319–330. 10.1016/j.jpsychires.2008.03.012
    1. Lit L., Gilbert D. L., Walker W., Sharp F. R. (2007). A subgroup of Tourette's patients overexpress specific natural killer cell genes in blood: a preliminary report. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 144, 958–963. 10.1002/ajmg.b.30550
    1. Mattheisen M., Samuels J. F., Wang Y., Greenberg B. D., Fyer A. J., McCracken J. T., et al. . (2015). Genome-wide association study in obsessive-compulsive disorder: results from the OCGAS. Mol. Psychiatry 20, 337–344. 10.1038/mp.2014.43
    1. McGrath L. M., Yu D., Marshall C., Davis L. K., Thiruvahindrapuram B., Li B., et al. . (2014). Copy number variation in obsessive-compulsive disorder and tourette syndrome: a cross-disorder study. J. Am. Acad. Child Adolesc. Psychiatry 53, 910–919. 10.1016/j.jaac.2014.04.022
    1. Mol Debes N. M. M., Hjalgrim H., Skov L. (2008). Validation of the presence of comorbidities in a danish clinical cohort of children with Tourette Syndrome. J. Child Neurol. 23, 1017–1027. 10.1177/0883073808316370
    1. Nag A., Bochukova E. G., Kremeyer B., Campbell D. D., Muller H., Valencia-Duarte A. V., et al. . (2013). CNV Analysis in tourette syndrome implicates large genomic rearrangements in COL8A1 and NRXN1. PLoS ONE 8:e59061. 10.1371/journal.pone.0059061
    1. Pagliaroli L., Vető B., Arányi T., Barta C. (2016). From genetics to epigenetics: new perspectives in tourette syndrome research. Front. Neurosci. 10:277. 10.3389/fnins.2016.00277
    1. Paschou P. (2013). The genetic basis of Gilles de la Tourette Syndrome. Neurosci. Biobehav. Rev. 37, 1026–1039. 10.1016/j.neubiorev.2013.01.016
    1. Plessen K. J., Royal J. M., Peterson B. S. (2007). Neuroimaging of tic disorders with co-existing attention-deficit/hyperactivity disorder. Eur. Child Adolesc. Psychiatry 16(Suppl. 1), 60–70. 10.1007/s00787-007-1008-2
    1. Risterucci C., Coccurello R., Banasr M., Stutzmann J. M., Amalric M., Nieoullon A. (2006). The metabotropic glutamate receptor subtype 5 antagonist MPEP and the Na+ channel blocker riluzole show different neuroprotective profiles in reversing behavioral deficits induced by excitotoxic prefrontal cortex lesions. Neuroscience 137, 211–220. 10.1016/j.neuroscience.2005.08.054
    1. Robertson M. M. (2000). Tourette syndrome, associated conditions and the complexities of treatment. Brain 123(Pt 3), 425–462. 10.1093/brain/123.3.425
    1. Robertson M. M. (2008). The prevalence and epidemiology of Gilles de la Tourette syndrome. Part 1: the epidemiological and prevalence studies. J. Psychosom. Res. 65, 461–472. 10.1016/j.jpsychores.2008.03.006
    1. Robertson M. M. (2015a). A personal 35 year perspective on Gilles de la Tourette syndrome: assessment, investigations, and management. Lancet Psychiatry 2, 88–104. 10.1016/S2215-0366(14)00133-3
    1. Robertson M. M. (2015b). A personal 35 year perspective on Gilles de la Tourette syndrome: prevalence, phenomenology, comorbidities, and coexistent psychopathologies. Lancet Psychiatry 2, 68–87. 10.1016/S2215-0366(14)00132-1
    1. Roessner V., Plessen K. J., Rothenberger A., Ludolph A. G., Rizzo R., Skov L., et al. . (2011). European clinical guidelines for Tourette syndrome and other tic disorders. Part II: pharmacological treatment. Eur. Child Adolesc. Psychiatry 20, 173–196. 10.1007/s00787-011-0163-7
    1. Scharf J. M., Yu D., Mathews C. A., Neale B. M., Stewart S. E., Fagerness J. A., et al. . (2013). Genome-wide association study of Tourette's syndrome. Mol. Psychiatry 18, 721–728. 10.1038/mp.2012.69
    1. Schumann G., Loth E., Banaschewski T., Barbot A., Barker G., Büchel C., et al. . (2010). The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol. Psychiatry 15, 1128–1139. 10.1038/mp.2010.4
    1. Singer H. S. (2013). Motor control, habits, complex motor stereotypies, and Tourette syndrome. Ann. N.Y. Acad. Sci. 1304, 22–31. 10.1111/nyas.12281
    1. Stewart S. E., Yu D., Scharf J. M., Neale B. M., Fagerness J. A., Mathews C. A., et al. . (2013). Genome-wide association study of obsessive-compulsive disorder. Mol. Psychiatry 18, 788–798. 10.1038/mp.2012.85
    1. Sundaram S. K., Huq A. M., Wilson B. J., Chugani H. T. (2010). Tourette syndrome is associated with recurrent exonic copy number variants(e–Pub ahead of print)(CME). Neurology 74, 1583–1590. 10.1212/WNL.0b013e3181e0f147
    1. Tang Y., Gilbert D. L., Glauser T. A., Hershey A. D., Sharp F. R. (2005). Blood gene expression profiling of neurologic diseases. Arch. Neurol. 62, 210–215. 10.1001/archneur.62.2.210
    1. Tian Y., Gunther J. R., Liao I. H., Liu D., Ander B. P., Stamova B. S., et al. . (2011a). GABA- and acetylcholine-related gene expression in blood correlate with tic severity and microarray evidence for alternative splicing in Tourette syndrome: a pilot study. Brain Res. 1381, 228–236. 10.1016/j.brainres.2011.01.026
    1. Tian Y., Liao I. H., Zhan X., Gunther J. R., Ander B. P., Liu D., et al. (2011b). Exon expression and alternatively spliced genes in tourette syndrome. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 156, 72–78. 10.1002/ajmg.b.31140
    1. Tian Y., Stamova B., Ander B., Jickling G., Gunther J., Corbett B., et al. . (2012). Correlations of gene expression with ratings of inattention and hyperactivity/impulsivity in tourette syndrome: a pilot study. BMC Med. Genomics 5:49. 10.1186/1755-8794-5-49
    1. Udvardi P. T., Nespoli E., Rizzo F., Hengerer B., Ludolph A. G. (2013). Nondopaminergic neurotransmission in the pathophysiology of tourette syndrome. Int. Rev. Neurobiol. 112, 95–130. 10.1016/B978-0-12-411546-0.00004-4
    1. van de Vondervoort I., Poelmans G., Aschrafi A., Pauls D. L., Buitelaar J. K., Glennon J. C., et al. . (2016). An integrated molecular landscape implicates the regulation of dendritic spine formation through insulin-related signalling in obsessive-compulsive disorder. J. Psychiatry Neurosci. 41, 280–285. 10.1503/jpn.140327
    1. Zilhão N. R., Padmanabhuni S. S., Pagliaroli L., Barta C., BIOS Consortium Smit, D. J. A., et al. . (2015). Epigenome-wide association study of tic disorders. Twin Res. Hum. Genet. 18, 699–709. 10.1017/thg.2015.72

Source: PubMed

3
订阅