COVID-19 and COPD

Janice M Leung, Masahiro Niikura, Cheng Wei Tony Yang, Don D Sin, Janice M Leung, Masahiro Niikura, Cheng Wei Tony Yang, Don D Sin

Abstract

COPD patients have increased risk of severe pneumonia and poor outcomes when they develop COVID-19. This may be related to poor underlying lung reserves or increased expression of ACE-2 receptor in small airways. https://bit.ly/37dSB8l

Conflict of interest statement

Conflict of interest: J.M. Leung has nothing to disclose. Conflict of interest: M. Niikura has nothing to disclose. Conflict of interest: C.W.T. Yang has nothing to disclose. Conflict of interest: D.D. Sin reports grants from Merck, personal fees for advisory board work from Sanofi-Aventis and Regeneron, grants and personal fees for lectures from Boehringer Ingelheim and AstraZeneca, personal fees for lectures and advisory board work from Novartis, outside the submitted work.

Figures

FIGURE 1
FIGURE 1
Schematic representation of a) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binding to the angiotensin-converting enzyme 2 (ACE-2) receptor following activation of the spike protein (s) by transmembrane serine protease 2 (TMPRSS2), which leads to endocytosis and infection. b) Human organs that have been reported by Zouet al. [105] to show ACE2 expression, with the respiratory system highlighted in red. c) The renin–angiotensin system (RAS) and the proposed SARS-CoV-2 action. The generation of angiotensin II from angiotensin I by angiotensin-converting enzyme (ACE) induces vasoconstriction of blood vessels and pro-inflammatory effects through the binding of angiotensin II receptor type 1 (AT1R), while the receptor type 2 (AT2R) may negatively regulate this pathway. ACE inhibitors (ACEi) and angiotensin II receptor blockers (ARBs) are very successful anti-hypertensives by promoting vasodilation of blood vessels. ACE-2 inhibits the activity of angiotensin II by converting angiotensin I to angiotensin 1–9 and angiotensin II to angiotensin 1–7, which binds to the MAS1 proto-oncogene (Mas) receptor with anti-inflammatory effects. Upon SARS-CoV-2 binding to ACE-2, there is a shift in the ACE/ACE-2 balance towards a predominance of ACE, resulting in increased pro-inflammatory effects and tissue damage.

References

    1. Coronavirus Worldometer Date last accessed: 11 July 2020.
    1. Centers for Disesase Control and Prevention Excess Deaths Associated with COVID-19. 2020. Date last accessed: 3 May 2020.
    1. Michelozzi P, de'Donato F, Scortichini M, et al. . Mortality impacts of the coronavirus disease (COVID-19) outbreak by sex and age: rapid mortality surveillance system, Italy, 1 February to 18 April 2020. Euro Surveill 2020; 25: 2000620. doi:10.2807/1560-7917.ES.2020.25.19.2000620
    1. Gershon AS, Thiruchelvam D, Chapman KR, et al. . Health services burden of undiagnosed and overdiagnosed COPD. Chest 2018; 153: 1336–1346. doi:10.1016/j.chest.2018.01.038
    1. Labonte LE, Tan WC, Li PZ, et al. . Undiagnosed chronic obstructive pulmonary disease contributes to the burden of health care use. Data from the CanCOLD Study. Am J Respir Crit Care Med 2016; 194: 285–298. doi:10.1164/rccm.201509-1795OC
    1. Martinez CH, Mannino DM, Jaimes FA, et al. . Undiagnosed obstructive lung disease in the United States. Associated factors and long-term mortality. Ann Am Thorac Soc 2015; 12: 1788–1795. doi:10.1513/AnnalsATS.201506-388OC
    1. Fang L, Gao P, Bao H, et al. . Chronic obstructive pulmonary disease in China: a nationwide prevalence study. Lancet Respir Med 2018; 6: 421–430. doi:10.1016/S2213-2600(18)30103-6
    1. Guan WJ, Ni ZY, Hu Y, et al. . Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382: 1708–1720. doi:10.1056/NEJMoa2002032
    1. Wang Y, Tong J, Qin Y, et al. . Characterization of an asymptomatic cohort of SARS-COV-2 infected individuals outside of Wuhan, China. Clin Infect Dis 2020; in press [10.1093/cid/ciaa629].
    1. Wang D, Hu B, Hu C, et al. . Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323: 1061–1069. doi:10.1001/jama.2020.1585
    1. Zhou F, Yu T, Du R, et al. . Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395: 1054–1062. doi:10.1016/S0140-6736(20)30566-3
    1. Huang C, Wang Y, Li X, et al. . Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497–506. doi:10.1016/S0140-6736(20)30183-5
    1. Guan WJ, Liang WH, Zhao Y, et al. . Comorbidity and its impact on 1590 patients with Covid-19 in China: a nationwide analysis. Eur Respir J 2020; 55: 2000547. doi:10.1183/13993003.00547-2020
    1. Zhang JJ, Dong X, Cao YY, et al. . Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020; 75: 1730–1741.
    1. Liu W, Tao ZW, Lei W, et al. . Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin Med J (Engl) 2020; 133: 1032–1038. doi:10.1097/CM9.0000000000000775
    1. Feng Y, Ling Y, Bai T, et al. . COVID-19 with different severity: a multi-center study of clinical features. Am J Respir Crit Care Med 2020; 201: 1380–1388. doi:10.1164/rccm.202002-0445OC
    1. Li X, Xu S, Yu M, et al. . Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol 2020; 146: 110–118.
    1. Wang CZ, Hu SL, Wang L, et al. . Early risk factors of the exacerbation of coronavirus disease 2019 pneumonia. J Med Virol 2020; in press [].
    1. Yan X, Li F, Wang X, et al. . Neutrophil to lymphocyte ratio as prognostic and predictive factor in patients with coronavirus disease 2019: a retrospective cross-sectional study. J Med Virol 2020; in press [10.1002/jmv.26061].
    1. Xiong Z, Xin C, Yan MX, et al. . Clinical characteristics and outcomes of 421 patients with COVID-19 treated in a mobile cabin hospital. Chest 2020; in press [10.1016/j.chest.2020.05.515].
    1. Lv Z, Cheng S, Le J, et al. . Clinical characteristics and co-infections of 354 hospitalized patients with COVID-19 in Wuhan, China: a retrospective cohort study. Microbes Infect 2020; 22: 195–199.
    1. Cai Q, Chen F, Wang T, et al. . Obesity and COVID-19 severity in a designated hospital in Shenzhen, China. Diabetes Care 2020; 43: 1392–1398.
    1. Chen R, Sang L, Jiang M, et al. . Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J Allergy Clin Immunol 2020; 146: 89–100.
    1. Shi S, Qin M, Cai Y, et al. . Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur Heart J 2020; 41: 2070–2079. doi:10.1093/eurheartj/ehaa408
    1. Zou X, Li S, Fang M, et al. . Acute Physiology and Chronic Health Evaluation II Score as a predictor of hospital mortality in patients of coronavirus disease 2019. Crit Care Med 2020; 48: e657–e665.
    1. Hu L, Chen S, Fu Y, et al. . Risk factors associated with clinical outcomes in 323 COVID-19 hospitalized patients in Wuhan, China. Clin Infect Dis 2020; in press [10.1093/cid/ciaa539]. doi:10.1093/cid/ciaa539
    1. Zhang J, Yu M, Tong S, et al. . Predictive factors for disease progression in hospitalized patients with coronavirus disease 2019 in Wuhan, China. J Clin Virol 2020; 127: 104392. doi:10.1016/j.jcv.2020.104392
    1. Wang D, Yin Y, Hu C, et al. . Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. Crit Care 2020; 24: 188. doi:10.1186/s13054-020-02895-6
    1. Lian J, Jin X, Hao S, et al. . Analysis of epidemiological and clinical features in older patients with corona virus disease 2019 (COVID-19) out of Wuhan. Clin Infect Dis 2020; 71: 740–747. doi:10.1093/cid/ciaa242
    1. Liu K, Fang YY, Deng Y, et al. . Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J 2020; 133: 1025–1031. doi:10.1097/CM9.0000000000000744
    1. Wu J, Wu X, Zeng W, et al. . Chest CT findings in patients with coronavirus disease 2019 and its relationship with clinical features. Invest Radiol 2020; 55: 257–261. doi:10.1097/RLI.0000000000000670
    1. Xu X, Yu C, Qu J, et al. . Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging 2020; 47: 1275–1280. doi:10.1007/s00259-020-04735-9
    1. Zhu W, Xie K, Lu H, et al. . Initial clinical features of suspected coronavirus disease 2019 in two emergency departments outside of Hubei, China. J Med Virol 2020; in press [10.1002/jmv.25763].
    1. Huang Y, Tu M, Wang S, et al. . Clinical characteristics of laboratory confirmed positive cases of SARS-CoV-2 infection in Wuhan, China: a retrospective single center analysis. Travel Med Infect Dis 2020; in press [10.1016/j.tmaid.2020.101606]. doi:10.1016/j.tmaid.2020.101606
    1. Zhang X, Tan Y, Ling Y, et al. . Viral and host factors related to the clinical outcome of COVID-19. Nature 2020; 583: 437–440.
    1. Liu L, Liu W, Zheng Y, et al. . A preliminary study on serological assay for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 238 admitted hospital patients. Microbes Infect 2020; 22: 206–211.
    1. Lian J, Jin X, Hao S, et al. . Epidemiological, clinical, and virological characteristics of 465 hospitalized cases of coronavirus disease 2019 (COVID-19) from Zhejiang province in China. Influenza Other Respir Viruses 2020; in press [10.1111/irv.12758].
    1. Hong Y, Wu X, Qu J, et al. . Clinical characteristics of coronavirus disease 2019 and development of a prediction model for prolonged hospital length of stay. Ann Transl Med 2020; 8: 443. doi:10.21037/atm.2020.03.147
    1. Ji M, Yuan L, Shen W, et al. . Characteristics of disease progress in patients with coronavirus disease 2019 in Wuhan, China. Epidemiol Infect 2020; 148: e94. doi:10.1017/S0950268820000977
    1. Qiu C, Deng Z, Xiao Q, et al. . Transmission and clinical characteristics of coronavirus disease 2019 in 104 outside-Wuhan patients, China. J Med Virol 2020; in press [10.1002/jmv.25975].
    1. Wei JF, Huang FY, Xiong TY, et al. . Acute myocardial injury is common in patients with COVID-19 and impairs their prognosis. Heart 2020; 106: 1154–1159.
    1. Richardson S, Hirsch JS, Narasimhan M, et al. . Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA 2020; 323: 2052–2059. doi:10.1001/jama.2020.6775
    1. Goyal P, Choi JJ, Pinheiro LC, et al. . Clinical characteristics of Covid-19 in New York City. N Engl J Med 2020; 382: 2372–2374.
    1. Kuno T, Takahashi M, Obata R, et al. . Cardiovascular comorbidities, cardiac injury and prognosis of COVID-19 in New York City. Am Heart J 2020; 226: 24–25. doi:10.1016/j.ahj.2020.05.005
    1. Palaiodimos L, Kokkinidis DG, Li W, et al. . Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metab Clin Exp 2020; 108: 154262. doi:10.1016/j.metabol.2020.154262
    1. Lagi F, Piccica M, Graziani L, et al. . Early experience of an infectious and tropical diseases unit during the coronavirus disease (COVID-19) pandemic, Florence, Italy, February to March 2020. Euro Surveill 2020; 25: 2000556. doi:10.2807/1560-7917.ES.2020.25.17.2000556
    1. Cecconi M, Piovani D, Brunetta E, et al. . Early predictors of clinical deterioration in a cohort of 239 patients hospitalized for Covid-19 infection in Lombardy, Italy. J Clin Med 2020; 9: 1548. doi:10.3390/jcm9051548
    1. Inciardi RM, Adamo M, Lupi L, et al. . Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur Heart J 2020; 41: 1821–1829. doi:10.1093/eurheartj/ehaa388
    1. Grasselli G, Zangrillo A, Zanella A, et al. . Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 2020; 323: 1574–1581. doi:10.1001/jama.2020.5394
    1. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. . Covid-19 in critically ill patients in the Seattle region - case series. N Engl J Med 2020; 382: 2012–2022. doi:10.1056/NEJMoa2004500
    1. Barrasa H, Rello J, Tejada S, et al. . SARS-Cov-2 in Spanish intensive care: early experience with 15-day survival in Vitoria. Anaesth Crit Care Pain Med 2020; in press [10.1016/j.accpm.2020.04.001].
    1. Arentz M, Yim E, Klaff L, et al. . Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state. JAMA 2020; 323: 1612–1614. doi:10.1001/jama.2020.4326
    1. Guerriero M, Caminati M, Viegi G, et al. . COPD prevalence in a north-eastern Italian general population. Respir Med 2015; 109: 1040–1047. doi:10.1016/j.rmed.2015.05.009
    1. Miravitlles M, Soriano JB, García-Río F, et al. . Prevalence of COPD in Spain: impact of undiagnosed COPD on quality of life and daily life activities. Thorax 2009; 64: 863–868. doi:10.1136/thx.2009.115725
    1. New York State Department of Health 2015 Chronic Obstructive Pulmonary Disease, New York State Adults, 2015. Date last accessed: 30 May 2020.
    1. Centers for Disease Control and Prevention. COPD among adults in Washington. 2018. Date last accessed: 30 May 2020.
    1. Alqahtani JS, Oyelade T, Aldhahir AM, et al. . Prevalence, severity and mortality associated with COPD and smoking in patients with COVID-19: a rapid systematic review and meta-analysis. PLoS One 2020; 15: e0233147. doi:10.1371/journal.pone.0233147
    1. Li W, Moore MJ, Vasilieva N, et al. . Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426: 450–454. doi:10.1038/nature02145
    1. Hoffmann M, Kleine-Weber H, Schroeder S, et al. . SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181: 271–280. doi:10.1016/j.cell.2020.02.052
    1. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5: 562–569. doi:10.1038/s41564-020-0688-y
    1. Walls AC, Park YJ, Tortorici MA, et al. . Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020; 181: 281–292. doi:10.1016/j.cell.2020.02.058
    1. Zhou P, Yang XL, Wang XG, et al. . A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579: 270–273. doi:10.1038/s41586-020-2012-7
    1. Leung JM, Yang CX, Tam A, et al. . ACE-2 Expression in the small airway epithelia of smokers and COPD patients: implications for COVID-19. Eur Respir J 2020; 55: 2000688. doi:10.1183/13993003.00688-2020
    1. Cai G, Bosse Y, Xiao F, et al. . Tobacco smoking increases the lung gene expression of ACE2, the receptor of SARS-CoV-2. Am J Respir Crit Care Med 2020; 201: 1557–1559.
    1. Li G, He X, Zhang L, et al. . Assessing ACE2 expression patterns in lung tissues in the pathogenesis of COVID-19. J Autoimmun 2020; 112: 102463. doi:10.1016/j.jaut.2020.102463
    1. Zhang H, Rostami MR, Leopold PL, et al. . Expression of the SARS-CoV-2 ACE2 receptor in the human airway epithelium. Am J Respir Crit Care Med 2020; 202: 219–229.
    1. Leung JM, Yang CX, Sin DD. COVID-19 and nicotine as a mediator of ACE-2. Eur Respir J 2020; 55: 2001261. doi:10.1183/13993003.01261-2020
    1. Russo P, Bonassi S, Giacconi R, et al. . COVID-19 and smoking: is nicotine the hidden link? Eur Respir J 2020; 55: 2001116. doi:10.1183/13993003.01116-2020
    1. Sungnak W, Huang N, Becavin C, et al. . SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020; 26: 681–687. doi:10.1038/s41591-020-0868-6
    1. Peters MC, Sajuthi S, Deford P, et al. . COVID-19 related genes in sputum cells in asthma: relationship to demographic features and corticosteroids. Am J Respir Crit Care Med 2020; 202: 83–90.
    1. Halpin DMG, Singh D, Hadfield RM. Inhaled corticosteroids and COVID-19: a systematic review and clinical perspective. Eur Respir J 2020; 55: 2001009. doi:10.1183/13993003.01009-2020
    1. Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med 2006; 3: e343. doi:10.1371/journal.pmed.0030343
    1. Alfaraj SH, Al-Tawfiq JA, Assiri AY, et al. . Clinical predictors of mortality of Middle East respiratory syndrome coronavirus (MERS-CoV) infection: a cohort study. Travel Med Infect Dis 2019; 29: 48–50. doi:10.1016/j.tmaid.2019.03.004
    1. Arabi YM, Mandourah Y, Al-Hameed F, et al. . Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome. Am J Respir Crit Care Med 2018; 197: 757–767. doi:10.1164/rccm.201706-1172OC
    1. Horby P, Lim WS, Emberson J, et al. . Effect of dexamethasone in hospitalized patients with COVID-19: preliminary report. medRxiv 2020; preprint [10.1101/2020.06.22.20137273]. 10.1101/2020.06.22.20137273.
    1. Zha L, Li S, Pan L, et al. . Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). Med J Aust 2020; 212: 416–420. doi:10.5694/mja2.50577
    1. Lu X, Chen T, Wang Y, et al. . Adjuvant corticosteroid therapy for critically ill patients with COVID-19. Crit Care 2020; 24: 241. doi:10.1186/s13054-020-02964-w
    1. Wu C, Chen X, Cai Y, et al. . Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020; 180: 934–943.
    1. Fadel R, Morrison AR, Vahia A, et al. . Early short course corticosteroids in hospitalized patients with COVID-19. Clin Infect Dis 2020; in press [10.1093/cid/ciaa601]. doi:10.1093/cid/ciaa601
    1. Tam CF, Cheung KS, Lam S, et al. . Impact of coronavirus disease 2019 (COVID-19) outbreak on ST-segment-elevation myocardial infarction care in Hong Kong, China. Circ Cardiovasc Qual Outcomes 2020; 13: e006631.
    1. Tam CF, Cheung KS, Lam S, et al. . Impact of coronavirus disease 2019 (COVID-19) outbreak on outcome of myocardial infarction in Hong Kong, China. Catheter Cardiovasc Interv 2020; in press [10.1002/ccd.28943].
    1. Pinnock H, Hanley J, McCloughan L, et al. . Effectiveness of telemonitoring integrated into existing clinical services on hospital admission for exacerbation of chronic obstructive pulmonary disease: researcher blind, multicentre, randomised controlled trial. BMJ 2013; 347: f6070. doi:10.1136/bmj.f6070
    1. McDowell JE, McClean S, FitzGibbon F, et al. . A randomised clinical trial of the effectiveness of home-based health care with telemonitoring in patients with COPD. J Telemed Telecare 2015; 21: 80–87. doi:10.1177/1357633X14566575
    1. Au DH, Macaulay DS, Jarvis JL, et al. . Impact of a telehealth and care management program for patients with chronic obstructive pulmonary disease. Ann Am Thorac Soc 2015; 12: 323–331. doi:10.1513/AnnalsATS.201501-042OC
    1. Hardinge M, Rutter H, Velardo C, et al. . Using a mobile health application to support self-management in chronic obstructive pulmonary disease: a six-month cohort study. BMC Med Inform Decis Mak 2015; 15: 46. doi:10.1186/s12911-015-0171-5
    1. Ho TW, Huang CT, Chiu HC, et al. . Effectiveness of telemonitoring in patients with chronic obstructive pulmonary disease in Taiwan-a randomized controlled trial. Sci Rep 2016; 6: 23797. doi:10.1038/srep23797
    1. Bourne S, DeVos R, North M, et al. . Online versus face-to-face pulmonary rehabilitation for patients with chronic obstructive pulmonary disease: randomised controlled trial. BMJ Open 2017; 7: e014580.
    1. Vasilopoulou M, Papaioannou AI, Kaltsakas G, et al. . Home-based maintenance tele-rehabilitation reduces the risk for acute exacerbations of COPD, hospitalisations and emergency department visits. Eur Respir J 2017; 49: 1602129. doi:10.1183/13993003.02129-2016
    1. Paneroni M, Colombo F, Papalia A, et al. . Is telerehabilitation a safe and viable option for patients with COPD? A feasibility study. COPD 2015; 12: 217–225. doi:10.3109/15412555.2014.933794
    1. Zheng Y, Sun LJ, Xu M, et al. . Clinical characteristics of 34 COVID-19 patients admitted to intensive care unit in Hangzhou, China. J Zhejiang Univ Sci B 2020; 21: 378–387. doi:10.1631/jzus.B2000174
    1. Chu Y, Li T, Fang Q, et al. . Clinical features of critically ill patients with confirmed COVID-19. J Infect 2020; 81: 147–178.
    1. Tomlins J, Hamilton F, Gunning S, et al. . Clinical features of 95 sequential hospitalised patients with novel coronavirus 2019 disease (COVID-19), the first UK cohort. J Infect 2020; 81: e59–e61.
    1. Israelsen SB, Kristiansen KT, Hindsberger B, et al. . Characteristics of patients with COVID-19 pneumonia at Hvidovre Hospital, March-April 2020. Dan Med J 2020; 67: A05200313.
    1. Auld SC, Caridi-Scheible M, Blum JM, et al. . ICU and ventilator mortality among critically ill adults with coronavirus disease 2019. Crit Care Med 2020; in press [10.1097/CCM.0000000000004457].
    1. Buckner FS, McCulloch DJ, Atluri V, et al. . Clinical features and outcomes of 105 hospitalized patients with COVID-19 in Seattle, Washington. Clin Infect Dis 2020; in press [10.1093/cid/ciaa632].
    1. Javanian M, Bayani M, Shokri M, et al. . Clinical and laboratory findings from patients with COVID-19 pneumonia in Babol North of Iran: a retrospective cohort study. Rom J Intern Med 2020; in press [10.2478/rjim-2020-0013].
    1. Itelman E, Wasserstrum Y, Segev A, et al. . Clinical characterization of 162 COVID-19 patients in Israel: preliminary report from a large tertiary center. Isr Med Assoc J 2020; 22: 271–274.
    1. de Abajo FJ, Rodríguez-Martín S, Lerma V, et al. . Use of renin-angiotensin-aldosterone system inhibitors and risk of COVID-19 requiring admission to hospital: a case-population study. Lancet 2020; 395: 1705–1714. doi:10.1016/S0140-6736(20)31030-8
    1. Szekely Y, Lichter Y, Taieb P, et al. . The spectrum of cardiac manifestations in coronavirus disease 2019 (COVID-19) - a systematic echocardiographic study. Circulation 2020; 142: 342–353.
    1. Price-Haywood EG, Burton J, Fort D, et al. . Hospitalization and mortality among black patients and white patients with Covid-19. N Engl J Med 2020; 382: 2534–2543.
    1. Ferguson J, Rosser JI, Quintero O, et al. . Characteristics and outcomes of coronavirus disease patients under nonsurge conditions, Northern California, USA, March-April 2020. Emerging Infect Dis 2020; 26: 1679–1685. doi:10.3201/eid2608.201776
    1. Gold JAW, Wong KK, Szablewski CM, et al. . Characteristics and clinical outcomes of adult patients hospitalized with COVID-19 - Georgia, March 2020. MMWR Morb Mortal Wkly Rep 2020; 69: 545–550. doi:10.15585/mmwr.mm6918e1
    1. Rentsch CT, Kidwai-Khan F, Tate JP, et al. . Covid-19 Testing, Hospital Admission, and Intensive Care Among 2,026,227 United States Veterans Aged 54-75 Years. medRxiv 2020; preprint [10.1101/2020.04.09.20059964].
    1. Mitra AR, Fergusson NA, Lloyd-Smith E, et al. . Baseline characteristics and outcomes of patients with COVID-19 admitted to intensive care units in Vancouver, Canada: a case series. CMAJ 2020; 192: E694–E701.
    1. Zou X, Chen K, Zou J, et al. . Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020; 14: 185–192. doi:10.1007/s11684-020-0754-0

Source: PubMed

3
订阅