Bronchodilator reversibility testing in post-COVID-19 patients undergoing pulmonary rehabilitation

Mauro Maniscalco, Pasquale Ambrosino, Salvatore Fuschillo, Silvia Stufano, Alessandro Sanduzzi, Maria Gabriella Matera, Mario Cazzola, Mauro Maniscalco, Pasquale Ambrosino, Salvatore Fuschillo, Silvia Stufano, Alessandro Sanduzzi, Maria Gabriella Matera, Mario Cazzola

Abstract

Background: The usefulness of bronchodilators in coronavirus diseases 2019 (COVID-19) survivors is still uncertain, especially for patients with a concomitant obstructive lung disease. We aimed at verifying the level of bronchodilator reversibility in COVID-19 patients undergoing multidisciplinary pulmonary rehabilitation after the acute phase.

Methods: We enrolled 105 consecutive patients referring to the Pulmonary Rehabilitation Unit of Istituti Clinici Scientifici Maugeri Spa SB, IRCCS of Telese Terme, Benevento, Italy after being discharged from the COVID-19 acute care ward and after recovering from acute COVID-19 pneumonia. All subjects performed a spirometry before and after inhalation of salbutamol 400 μg to determine the bronchodilation response within 48 h of admission to the unit.

Results: All patients had suffered from a moderate to severe COVID-19, classified 3 or 4 according to the WHO classification, Seventeen patients had concomitant obstructive lung disease (14 suffering from COPD and 3 from asthma). FEV1 after salbutamol improved on average by 41.7 mL in the entire examined sample, by 29.4 mL in subjects without concomitant obstructive lung diseases, by 59.3 mL in COPD patients and by 320.0 mL in asthma patients. Mean FVC after salbutamol improved by 65.7 mL in the entire examined sample, by 52.5 mL in subjects without concomitant obstructive lung diseases, by 120.0 mL in COPD patients, and by 200.0 mL in asthma patients.

Conclusions: This study suggests that a treatment with bronchodilators must always be taken into consideration in post-COVID-19 patients because it can induce a functional improvement that, even if small, can facilitate the breathing of these patients.

Keywords: Bronchodilators; COVID-19; Chronic disease; Disability; Outcome; Rehabilitation.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Copyright © 2021 Elsevier Ltd. All rights reserved.

Figures

Fig. 1
Fig. 1
Mean (SE) increase from baseline of FEV1 after salbutamol 400 μg in the entire group (105 subjects), in 76 patients with a basal FEV1 <90% predicted, in 88 subjects without concomitant obstructive lung diseases (No OLD), and in 48 previously healthy asymptomatic non-smokers (Healthy NS). *P < 0.05, **P < 0.01, ***P < 0.001 vs pre salbutamol.
Fig. 2
Fig. 2
Mean (SE) increase from baseline of FEV1 after salbutamol 400 μg in the entire group (105 subjects), in 14 patients with preexisting COPD and in 3 asthmatic subjects. ***P < 0.001 vs pre salbutamol.
Fig. 3
Fig. 3
Mean (SE) increase from baseline of FEV1 after salbutamol 400 μg in the subgroups divided according to the body mass index (BMI) values (BMI <30: 57 subjects; BMI 30.00–34.99: 24 subjects; BMI 35.01–39.99: 18 subjects; BMI ≥40: 6 subjects). *P < 0.05, **P < 0.01 vs pre salbutamol.
Fig. 4
Fig. 4
Mean (SE) increase from baseline of FEV1 and FVC after salbutamol 400 μg in the group of 80 patients who did not undergo mechanical ventilation (MV) and in that of 25 subjects who had undergone MV. *P < 0.05, **P < 0.01 vs pre salbutamol.
Fig. 5
Fig. 5
Mean (SE) increase from baseline of FVC after salbutamol 400 μg in the entire group (105 subjects), in 88 subjects without concomitant obstructive lung diseases (No OLD), in 15 COPD patients and in 3 asthma subjects. *P 

Fig. 6

Correlation between the changes…

Fig. 6

Correlation between the changes of FEV 1 and those of FVC after…
Fig. 6
Correlation between the changes of FEV1 and those of FVC after salbutamol 400 μg in the entire group, in subjects without concomitant obstructive lung diseases (No OLD), in COPD and in asthma.
Fig. 6
Fig. 6
Correlation between the changes of FEV1 and those of FVC after salbutamol 400 μg in the entire group, in subjects without concomitant obstructive lung diseases (No OLD), in COPD and in asthma.

References

    1. Global Initiative for Asthma Global strategy for asthma management and prevention. 2020. Update. Available from:
    1. Global Initiative for Chronic Obstructive Lung Disease Global strategy for prevention, diagnosis and management of COPD. 2021. report. Available at:
    1. Hanania N.A., Celli B.R., Donohue J.F., Martin U.J. Bronchodilator reversibility in COPD. Chest. 2011;140(4):1055–1063.
    1. Hansen J.E., Dilektasli A.G., Porszasz J., Stringer W.W., Pak Y., Rossiter H.B., Casaburi R. A new bronchodilator response grading strategy identifies distinct patient populations. Ann Am Thorac Soc. 2019;16(12):1504–1517.
    1. Pellegrino R., Viegi G., Brusasco V., Crapo R.O., Burgos F., Casaburi R., Coates A., van der Grinten C.P., Gustafsson P., Hankinson J., Jensen R., Johnson D.C., MacIntyre N., McKay R., Miller M.R., Navajas D., Pedersen O.F., Wanger J. Interpretative strategies for lung function tests. Eur. Respir. J. 2005;26(5):948–968.
    1. World Health Organization . World Health Organization Geneva; 2000. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation on Obesity. Available at:
    1. World Health Organization Clinical management of covid-19 - interim guidance. Available at:
    1. Hegewald M.J., Townsend R.G., Abbott J.T., Crapo R.O. Bronchodilator response in patients with normal baseline spirometry. Respir. Care. 2012;57(10):1564–1570.
    1. Iyer V.N., Schroeder D.R., Parker K.O., Hyatt R.E., Scanlon P.D. The nonspecific pulmonary function test: longitudinal follow-up and outcomes. Chest. 2011;139(4):878–886.
    1. Fumagalli A., Misuraca C., Bianchi A., Borsa N., Limonta S., Maggiolini S., Bonardi D.R., Corsonello A., Di Rosa M., Soraci L., Lattanzio F., Colombo D. Pulmonary function in patients surviving to COVID-19 pneumonia. Infection. 2021;49(1):153–157.
    1. Mo X., Jian W., Su Z., Chen M., Peng H., Peng P., Lei C., Chen R., Zhong N., Li S. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur. Respir. J. 2020;55(6):2001217.
    1. Latronico N, Peli E, Rodella F, Novelli MP, Rasulo FA, Piva S. Three-month outcome in survivors of COVID-19 associated Acute Respiratory Distress Syndrome. Available at SSRN: 10.2139/ssrn.3749226.
    1. Smet J., Stylemans D., Hanon S., Ilsen B., Verbanck S., Vanderhelst E. Clinical status and lung function 10 weeks after severe SARS-CoV-2 infection. Respir. Med. 2021;176:106276.
    1. Torres-Castro R., Vasconcello-Castillo L., Alsina-Restoy X., Solis-Navarro L., Burgos F., Puppo H., Vilaró J. Respiratory function in patients post-infection by COVID-19: a systematic review and meta-analysis. Pulmonology. 2020 doi: 10.1016/j.pulmoe.2020.10.013. Nov 2, Epub ahead of print.
    1. Santus P., Flor N., Saad M., Pini S., Franceschi E., Airoldi A., Gaboardi P., Ippolito S., Rizzi M., Radovanovic D. Trends over time of lung function and eadiological abnormalities in COVID-19 pneumonia: a prospective, observational, cohort study. J. Clin. Med. 2021;10(5):1021.
    1. Keddissi J.I., Elya M.K., Farooq S.U., Youness H.A., Jones K.R., Awab A., Kinasewitz G.T. Bronchial responsiveness in patients with restrictive spirometry. BioMed Res. Int. 2013;2013:498205.
    1. Nusair S. Abnormal carbon monoxide diffusion capacity in COVID-19 patients at time of hospital discharge. Eur. Respir. J. 2020;56(1):2001832.
    1. Yang J., Stanton J., Wang L., Beckert L., Frampton C., Burton D., Swanney M.P. Effect of salbutamol on the measurement of single-breath diffusing capacity. Respirology. 2013;18(8):1223–1229.
    1. Santus P., Centanni S., Morelli N., Di Marco F., Verga M., Cazzola M. Tiotropium is less likely to induce oxygen desaturation in stable COPD patients compared to long-acting β2-agonists. Respir. Med. 2007;101(8):1798–1803.
    1. Kainu A., Lindqvist A., Sarna S., Lundbäck B., Sovijärvi A. FEV1 response to bronchodilation in an adult urban population. Chest. 2008;134(2):387–393.
    1. Albert P., Agusti A., Edwards L., Tal-Singer R., Yates J., Bakke P., Celli B.R., Coxson H.O., Crim C., Lomas D.A., Macnee W., Miller B., Rennard S., Silverman E.K., Vestbo J., Wouters E., Calverley P. Bronchodilator responsiveness as a phenotypic characteristic of established chronic obstructive pulmonary disease. Thorax. 2012;67(8):701–708.
    1. Tan W.C., Vollmer W.M., Lamprecht B., Mannino D.M., Jithoo A., Nizankowska-Mogilnicka E., Mejza F., Gislason T., Burney P.G., Buist A.S., BOLD Collaborative Research Group Worldwide patterns of bronchodilator responsiveness: results from the Burden of Obstructive Lung Disease study. Thorax. 2012;67(8):718–726.
    1. Salehi S., Reddy S., Gholamrezanezhad A. Long-term pulmonary consequences of coronavirus disease 2019 (COVID-19): what we know and what to expect. J. Thorac. Imag. 2020;35(4):W87–W89.
    1. Halpin S.J., McIvor C., Whyatt G., Adams A., Harvey O., McLean L., Walshaw C., Kemp S., Corrado J., Singh R., Collins T., O'Connor R.J., Sivan M. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: a cross-sectional evaluation. J. Med. Virol. 2021;93(2):1013–1022.
    1. Taboada M., Cariñena A., Moreno E., Rodríguez N., Domínguez M.J., Casal A., Riveiro V., Diaz-Vieito M., Valdés L., Álvarez J., Seoane-Pillado T. Post-COVID-19 functional status six-months after hospitalization. J. Infect. 2021;82(4):E31–E33.
    1. Hayes J.P. Considering the long-term respiratory effects of Covid-19. Occup. Med. (Lond.) 2021 Jan 22 doi: 10.1093/occmed/kqaa224. Epub ahead of print. PMID: 33479724.
    1. Xaubet A., Molina-Molina M., Acosta O., Bollo E., Castillo D., Fernández-Fabrellas E., Rodríguez-Portal J.A., Valenzuela C., Ancochea J. Guidelines for the medical treatment of idiopathic pulmonary fibrosis. Arch. Bronconeumol. 2017;53(5):263–269.
    1. Dong F., Zhang Y., Chi F., Song Q., Zhang L., Wang Y., Che C. Clinical efficacy and safety of ICS/LABA in patients with combined idiopathic pulmonary fibrosis and emphysema. Int. J. Clin. Exp. Med. 2015;8(6):8617–8625.
    1. Zhang L., Zhang C., Dong F., Song Q., Chi F., Liu L., Wang Y., Che C. Combined pulmonary fibrosis and emphysema: a retrospective analysis of clinical characteristics, treatment and prognosis. BMC Pulm. Med. 2016;16(1):137.
    1. Assayag D., Vittinghoff E., Ryerson C.J., Cocconcelli E., Tonelli R., Hu X., Elicker B.M., Golden J.A., Jones K.D., King T.E., Jr., Koth L.L., Lee J.S., Ley B., Shum A.K., Wolters P.J., Ryu J.H., Collard H.R. The effect of bronchodilators on forced vital capacity measurement in patients with idiopathic pulmonary fibrosis. Respir. Med. 2015;109(8):1058–1062.
    1. Cazzola M., Puxeddu E., Bettoncelli G., Novelli L., Segreti A., Cricelli C., Calzetta L. The prevalence of asthma and COPD in Italy: a practice-based study. Respir. Med. 2011;105(3):386–391.
    1. Calverley P.M., Albert P., Walker P.P. Bronchodilator reversibility in chronic obstructive pulmonary disease: use and limitations. Lancet Respir Med. 2013;1(7):564–573.
    1. Zampogna E., Migliori G.B., Centis R., Cherubino F., Facchetti C., Feci D., Palmiotto G., Pignatti P., Saderi L., Sotgiu G., Spanevello A., Zappa M., Visca D. Functional impairment during post-acute COVID-19 phase: preliminary finding in 56 patients. Pulmonology. 2021 doi: 10.1016/j.pulmoe.2020.12.008. Epub ahead of print.
    1. Buchman A.S., Boyle P.A., Wilson R.S., Gu L., Bienias J.L., Bennett D.A. Pulmonary function, muscle strength and mortality in old age. Mech. Ageing Dev. 2008;129(11):625–631.

Source: PubMed

3
订阅