Sarcopenia increases the risk for mortality in patients who undergo amputation for diabetic foot

You Keun Kim, Ho Seong Lee, Jae Jung Ryu, Hye In Lee, Sang Gyo Seo, You Keun Kim, Ho Seong Lee, Jae Jung Ryu, Hye In Lee, Sang Gyo Seo

Abstract

Background: Although there have been reports that diabetes affects the prevalence of sarcopenia, no studies have examined the relationship between sarcopenia and mortality in patients undergoing leg amputation. The purpose of this study is to determine whether sarcopenia affects the mortality rate of patients undergoing diabetic foot amputation.

Methods: From among patients who underwent limb amputation for diabetes complications, this study included 167 patients who underwent abdominal CT within 1 year of amputation. We defined sarcopenia using sex-specific cut-off points for the L3 skeletal muscle index. The 5-year survival rate was analyzed. All patients were divided into two groups and compared according to the presence of sarcopenia. The mortality rate according to sarcopenia was assessed via the Kaplan-Meier method and log-rank test. Uni- and multivariate Cox regression analyses evaluated factors associated with survival rate.

Results: Among the total of 167 patients, the overall 5-year mortality rate was 52.7%. Of the 112 patients with sarcopenia, the 5-year mortality rate was 60.7%. Of the 55 patients without sarcopenia, the 5-year mortality rate was 36.4%. Kaplan-Meier analysis showed a high mortality of the sarcopenia group in the univariate (p = 0.016) and multivariate (p = 0.047) analysis.

Conclusions: Our study is the first to analyze the relationship between diabetic amputation and sarcopenia. Sarcopenia increases the risk of mortality in patients who undergo amputation for diabetic foot. Therefore, patients with diabetes should be careful to prevent sarcopenia with enough regular exercise as well as prevent diabetic foot disease.

Keywords: Amputation; Diabetes; Diabetic foot; Muscle; Sarcopenia.

Conflict of interest statement

This retrospective study was approved by the institutional review board of the Asan Medical Center. (2017–1142).The authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Kaplan-Meier survival graph for all subjects
Fig. 2
Fig. 2
Kaplan-Meier survival graph for the minor amputation group
Fig. 3
Fig. 3
Kaplan-Meier survival graph for the major amputation group

References

    1. Frykberg RG, Zgonis T, Armstrong DG, Driver VR, Giurini JM, Kravitz SR, Landsman AS, Lavery LA, Moore JC, Schuberth JM, et al. Diabetic foot disorders. A clinical practice guideline (2006 revision) The J Foot and Ankle Surg : Official Pub of the American College of Foot and Ankle Surgeons. 2006;45(5 Suppl):S1–66. doi: 10.1016/S1067-2516(07)60001-5.
    1. Wong E, Backholer K, Gearon E, Harding J, Freak-Poli R, Stevenson C, Peeters A. Diabetes and risk of physical disability in adults: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2013;1(2):106–114. doi: 10.1016/S2213-8587(13)70046-9.
    1. Armstrong DG, Boulton AJM, Bus SA. Diabetic foot ulcers and their recurrence. N Engl J Med. 2017;376(24):2367–2375. doi: 10.1056/NEJMra1615439.
    1. Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes. Jama. 2005;293(2):217–228. doi: 10.1001/jama.293.2.217.
    1. Jupiter DC, Thorud JC, Buckley CJ, Shibuya N. The impact of foot ulceration and amputation on mortality in diabetic patients. I: from ulceration to death, a systematic review. Int Wound J. 2016;13(5):892–903. doi: 10.1111/iwj.12404.
    1. Beyaz S, Guler UO, Bagir GS. Factors affecting lifespan following below-knee amputation in diabetic patients. Acta Orthop Traumatol Turc. 2017.
    1. Costa RHR, Cardoso NA, Procopio RJ, Navarro TP, Dardik A, de Loiola Cisneros L. Diabetic foot ulcer carries high amputation and mortality rates, particularly in the presence of advanced age, peripheral artery disease and anemia. Diabetes & metabolic syndrome. 2017;
    1. Nirantharakumar K, Saeed M, Wilson I, Marshall T, Coleman JJ. In-hospital mortality and length of stay in patients with diabetes having foot disease. J Diabetes Complicat. 2013;27(5):454–458. doi: 10.1016/j.jdiacomp.2013.05.003.
    1. Moulik PK, Mtonga R, Gill GV. Amputation and mortality in new-onset diabetic foot ulcers stratified by etiology. Diabetes Care. 2003;26(2):491–494. doi: 10.2337/diacare.26.2.491.
    1. Nather A, Bee CS, Huak CY, Chew JL, Lin CB, Neo S, Sim EY. Epidemiology of diabetic foot problems and predictive factors for limb loss. J Diabetes Complicat. 2008;22(2):77–82. doi: 10.1016/j.jdiacomp.2007.04.004.
    1. Liu P, Hao Q, Hai S, Wang H, Cao L, Dong B. Sarcopenia as a predictor of all-cause mortality among community-dwelling older people: a systematic review and meta-analysis. Maturitas. 2017;103:16–22. doi: 10.1016/j.maturitas.2017.04.007.
    1. Kalyani RR, Corriere M, Ferrucci L. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014;2(10):819–829. doi: 10.1016/S2213-8587(14)70034-8.
    1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing. 2010;39(4):412–423. doi: 10.1093/ageing/afq034.
    1. Choi MH, Oh SN, Lee IK, Oh ST, Won DD. Sarcopenia is negatively associated with long-term outcomes in locally advanced rectal cancer. J Cachexia Sarcopenia Muscle. 2017.
    1. van Vugt JL, Braam HJ, van Oudheusden TR, Vestering A, Bollen TL, Wiezer MJ, de Hingh IH, van Ramshorst B, Boerma D. Skeletal muscle depletion is associated with severe postoperative complications in patients undergoing Cytoreductive surgery with Hyperthermic intraperitoneal chemotherapy for peritoneal Carcinomatosis of colorectal Cancer. Ann Surg Oncol. 2015;22(11):3625–3631. doi: 10.1245/s10434-015-4429-z.
    1. Lieffers JR, Bathe OF. Fassbender K, Winget M, Baracos VE. Sarcopenia is associated with postoperative infection and delayed recovery from colorectal cancer resection surgery. Br J Cancer. 2012;107(6):931–936. doi: 10.1038/bjc.2012.350.
    1. Bianchi L, Volpato S. Muscle dysfunction in type 2 diabetes: a major threat to patient's mobility and independence. Acta Diabetol. 2016;53(6):879–889. doi: 10.1007/s00592-016-0880-y.
    1. Park SW, Goodpaster BH, Strotmeyer ES, Kuller LH, Broudeau R, Kammerer C, de Rekeneire N, Harris TB, Schwartz AV, Tylavsky FA, et al. Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes Care. 2007;30(6):1507–1512. doi: 10.2337/dc06-2537.
    1. Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, Seo JA, Kim SG, Kim NH, Baik SH, et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic obesity study (KSOS) Diabetes Care. 2010;33(7):1497–1499. doi: 10.2337/dc09-2310.
    1. Jeffcoate WJ, Bus SA, Game FL, Hinchliffe RJ, Price PE, Schaper NC. International working group on the diabetic F, the European wound management a: reporting standards of studies and papers on the prevention and management of foot ulcers in diabetes: required details and markers of good quality. Lancet Diabetes Endocrinol. 2016;4(9):781–788. doi: 10.1016/S2213-8587(16)30012-2.
    1. Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge MP, Albu J, Heymsfield SB, Heshka S. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 2004;97(6):2333–2338. doi: 10.1152/japplphysiol.00744.2004.
    1. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab. 2008;33(5):997–1006. doi: 10.1139/H08-075.
    1. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147(8):755–763. doi: 10.1093/oxfordjournals.aje.a009520.
    1. Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, Baracos VE. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9(7):629–635. doi: 10.1016/S1470-2045(08)70153-0.
    1. Gazis A, Pound N, Macfarlane R, Treece K, Game F, Jeffcoate W. Mortality in patients with diabetic neuropathic osteoarthropathy (Charcot foot) Diabetic medicine : a journal of the British Diabetic Association. 2004;21(11):1243–1246. doi: 10.1111/j.1464-5491.2004.01215.x.
    1. Evans KK, Attinger CE, Al-Attar A, Salgado C, Chu CK, Mardini S, Neville R. The importance of limb preservation in the diabetic population. J Diabetes Complicat. 2011;25(4):227–231. doi: 10.1016/j.jdiacomp.2011.02.001.
    1. Wukich DK, Ahn J, Raspovic KM, Gottschalk FA, La Fontaine J, Lavery LA. Comparison of Transtibial amputations in diabetic patients with and without end-stage renal disease. Foot Ankle Int. 2017;38(4):388–396. doi: 10.1177/1071100716688073.
    1. Kim KS, Park KS, Kim MJ, Kim SK, Cho YW, Park SW. Type 2 diabetes is associated with low muscle mass in older adults. Geriatr Gerontol Int. 2014;14(Suppl 1):115–121. doi: 10.1111/ggi.12189.
    1. Sinclair AJ, Abdelhafiz AH, Rodriguez-Manas L. Frailty and sarcopenia - newly emerging and high impact complications of diabetes. J Diabetes Complicat. 2017;31(9):1465–1473. doi: 10.1016/j.jdiacomp.2017.05.003.
    1. Wukich DK, Ahn J, Raspovic KM, La Fontaine J, Lavery LA. Improved quality of life after Transtibial amputation in patients with diabetes-related foot complications. The Int J of Lower Extremity Wounds. 2017;16(2):114–121. doi: 10.1177/1534734617704083.

Source: PubMed

3
订阅