Cortical GABAergic Dysfunction in Stress and Depression: New Insights for Therapeutic Interventions

Manoela V Fogaça, Ronald S Duman, Manoela V Fogaça, Ronald S Duman

Abstract

Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression provided the conceptual framework to understand the pathophysiology of MDD. However, accumulating evidence suggests that MDD and chronic stress are associated with an imbalance of excitation-inhibition (E:I) within the PFC, generated by a deficit of inhibitory synaptic transmission onto principal glutamatergic neurons. MDD patients and chronically stressed animals show a reduction in GABA and GAD67 levels in the brain, decreased expression of GABAergic interneuron markers, and alterations in GABAA and GABAB receptor levels. Moreover, genetically modified animals with deletion of specific GABA receptors subunits or interneuron function show depressive-like behaviors. Here, we provide further evidence supporting the role of cortical GABAergic interneurons, mainly somatostatin- and parvalbumin-expressing cells, required for the optimal E:I balance in the PFC and discuss how the malfunction of these cells can result in depression-related behaviors. Finally, considering the relatively low efficacy of current available medications, we review new fast-acting pharmacological approaches that target the GABAergic system to treat MDD. We conclude that deficits in cortical inhibitory neurotransmission and interneuron function resulting from chronic stress exposure can compromise the integrity of neurocircuits and result in the development of MDD and other stress-related disorders. Drugs that can establish a new E:I balance in the PFC by targeting the glutamatergic and GABAergic systems show promising as fast-acting antidepressants and represent breakthrough strategies for the treatment of depression.

Keywords: GABA; depression; ketamine; parvalbumin; prefrontal cortex; somatostatin; stress.

Figures

FIGURE 1
FIGURE 1
Proposed mechanisms underlying the action of ketamine and GABA-related drugs in the reestablishment of cortical excitatory–inhibitory (E:I) balance. Chronic stress induces spine loss and dendritic atrophy in pyramidal glutamatergic cells, and decreased GABAergic interneuron markers, leading to a reduction in the levels and function of GABA in the PFC. GABAergic dysfunction disturbs the optimal E:I balance in the brain and compromises the integrity of neurocircuits, contributing to the development of major depressive disorder (MDD) and other stress-related disorders. The E:I imbalance can be reversed by drugs via different GABA-related mechanisms. (1) Low doses of ketamine induce a glutamate burst in the PFC via blockade of NMDA receptors located in GABAergic interneurons; the tonic firing of these interneurons, notably parvalbumin (PV) and somatostatin (SST), is driven by NMDA receptors that are more sensitive to ketamine because of activity dependent of the Mg2+ block. This leads to disinhibition of pyramidal neurons causing activation of post-synaptic AMPA receptors; this in turn induces neuronal depolarization and activation of voltage-dependent Ca2+ channels (VDCCs). The enhancement of intracellular Ca2+ influx leads to BDNF release and stimulation of TrkB receptors, which activates mTORC1 signaling inducing protein synthesis required for the formation of new spines and synaptic plasticity. Ketamine also facilitates GABA-mediated effects, increasing IPSCs, VGAT, GAD, and gephyrin in the PFC, reversing the GABA deficits caused by chronic stress exposure. (2) Likewise, α5-GABAA negative allosteric modulators (α5-NAMs) and (3) GABAB receptors antagonists, probably located in GABAergic interneurons, enhance glutamatergic neurotransmission and produce ketamine-like effects. (4) Infusions of SST or SST analogs into limbic brain regions produce antidepressant-like effects through activation of SST2 receptors. (5) Finally, activation of post-synaptic GABAB receptors by agonists or positive allosteric modulators (PAMs), as well as activation of α5-GABAA by PAMs, and other GABAA subunits by neurosteroids, notably allopregnanolone (6), can also recruit BDNF expression and signaling that could contribute to antidepressant responses (dashed arrows).

References

    1. Abdallah C. G., Jackowski A., Sato J. R., Mao X., Kang G., Cheema R., et al. (2015). Prefrontal cortical GABA abnormalities are associated with reduced hippocampal volume in major depressive disorder. Eur. Neuropsychopharmacol. 25 1082–1090. 10.1016/j.euroneuro.2015.04.025
    1. Abellan M. T., Adell A., Honrubia M. A., Mengod G., Artigas F. (2000). GABAB-RI receptors in serotonergic neurons: effects of baclofen on 5-HT output in rat brain. Neuroreport 11 941–945. 10.1097/00001756-200004070-00009
    1. Akana S. F., Chu A., Soriano L., Dallman M. F. (2001). Corticosterone exerts site-specific and state-dependent effects in prefrontal cortex and amygdala on regulation of adrenocorticotropic hormone, insulin and fat depots. J. Neuroendocrinol. 13 625–637. 10.1046/j.1365-2826.2001.00676.x
    1. Alexander R. C. (2017). The potential efficacy of GABAB antagonists in depression. Curr. Opin. Pharmacol. 35 101–104. 10.1016/j.coph.2017.07.009
    1. Almeida F. B., Gomez R., Barros H. M. T., Nin M. S. (2019). Hemisphere-dependent changes in mRNA expression of GABAA receptor subunits and BDNF after intra-prefrontal cortex allopregnanolone infusion in rats. Neuroscience 397 56–66. 10.1016/j.neuroscience.2018.11.029
    1. Arranz B., Cowburn R., Eriksson A., Vestling M., Marcusson J. (1992). Gamma-aminobutyric acid-B (GABAB) binding sites in postmortem suicide brains. Neuropsychobiology 26 33–36. 10.1159/000118893
    1. Artigas F., Bortolozzi A., Celada P. (2018). Can we increase speed and efficacy of antidepressant treatments? Part I: general aspects and monoamine-based strategies. Eur. Neuropsychopharmacol. 28 445–456. 10.1016/j.euroneuro.2017.10.032
    1. Atack J. R. (2011). GABAA receptor subtype-selective modulators. I. alpha2/alpha3-selective agonists as non-sedating anxiolytics. Curr. Top. Med. Chem. 11 1176–1202. 10.2174/156802611795371350
    1. Atack J. R., Hallett D. J., Tye S., Wafford K. A., Ryan C., Sanabria-Bohorquez S. M., et al. (2011). Preclinical and clinical pharmacology of TPA023B, a GABAA receptor α2/α3 subtype-selective partial agonist. J. Psychopharmacol. 25 329–344. 10.1177/0269881109354928
    1. Atack J. R., Maubach K. A., Wafford K. A., O’Connor D., Rodrigues A. D., Evans D. C., et al. (2009). In vitro and in vivo properties of 3-tert-butyl-7-(5-methylisoxazol-3-yl)-2-(1-methyl-1H-1,2,4-triazol-5-ylmethoxy)- pyrazolo[1,5-d]-[1,2,4]triazine (MRK-016), a GABAA receptor alpha5 subtype-selective inverse agonist. J. Pharmacol. Exp. Ther. 331 470–484. 10.1124/jpet.109.157636
    1. Autry A. E., Adachi M., Nosyreva E., Na E. S., Los M. F., Cheng P. F., et al. (2011). NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475 91–95. 10.1038/nature10130
    1. Bakas T., van Nieuwenhuijzen P. S., Devenish S. O., McGregor I. S., Arnold J. C., Chebib M. (2017). The direct actions of cannabidiol and 2-arachidonoyl glycerol at GABAA receptors. Pharmacol. Res. 119 358–370. 10.1016/j.phrs.2017.02.022
    1. Banasr M., Lepack A., Fee C., Duric V., Maldonado-Aviles J., DiLeone R., et al. (2017). Characterization of GABAergic marker expression in the chronic unpredictable stress model of depression. Chronic Stress 1. 10.1177/2470547017720459
    1. Banerjee R., Ghosh A. K., Ghosh B., Bhattacharyya S., Mondal A. C. (2013). Decreased mRNA and protein expression of BDNF, NGF, and their receptors in the hippocampus from suicide: an analysis in human postmortem brain. Clin. Med. Insights Pathol. 6 1–11. 10.4137/CMPath.S12530
    1. Bauer M., Bschor T., Pfennig A., Whybrow P. C., Angst J., Versiani M., et al. (2007). World federation of societies of biological psychiatry (WFSBP) guidelines for biological treatment of unipolar depressive disorders in primary care. World J. Biol. Psychiatry 8 67–104. 10.1080/15622970701227829
    1. Beasley C. L., Zhang Z. J., Patten I., Reynolds G. P. (2002). Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins. Biol. Psychiatry 52 708–715. 10.1016/S0006-3223(02)01360-4
    1. Benham R. S., Hewage N. B., Suckow R. F., Engin E., Rudolph U. (2017). Prodepressant- and anxiogenic-like effects of serotonin-selective, but not noradrenaline-selective, antidepressant agents in mice lacking alpha2-containing GABAA receptors. Behav. Brain Res. 332 172–179. 10.1016/j.bbr.2017.05.063
    1. Berman R. M., Cappiello A., Anand A., Oren D. A., Heninger G. R., Charney D. S., et al. (2000). Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 47 351–354. 10.1016/S0006-3223(99)00230-9
    1. Bhagwagar Z., Wylezinska M., Taylor M., Jezzard P., Matthews P. M., Cowen P. J. (2004). Increased brain GABA concentrations following acute administration of a selective serotonin reuptake inhibitor. Am. J. Psychiatry 161 368–370. 10.1176/appi.ajp.161.2.368
    1. Birkenhager T. K., Moleman P., Nolen W. A. (1995). Benzodiazepines for depression? A review of the literature. Int. Clin. Psychopharmacol. 10 181–195. 10.1097/00004850-199510030-00008
    1. Bisogno T., Hanus L., De Petrocellis L., Tchilibon S., Ponde D. E., Brandi I., et al. (2001). Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br. J. Pharmacol. 134 845–852. 10.1038/sj.bjp.0704327
    1. Bittiger H., Froestl W., Mickel S., Olpe H. R. (1993). GABAB receptor antagonists: from synthesis to therapeutic applications. Trends Pharmacol. Sci. 14 391–394. 10.1016/0165-6147(93)90056-P
    1. Bowery N. G., Doble A., Hill D. R., Hudson A. L., Shaw J. S., Turnbull M. J., et al. (1981). Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. Eur. J. Pharmacol. 71 53–70. 10.1016/0014-2999(81)90386-1
    1. Bowery N. G., Hill D. R., Hudson A. L., Doble A., Middlemiss D. N., Shaw J., et al. (1980). (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283 92–94. 10.1038/283092a0
    1. Braestrup C., Nielsen M., Krogsgaard-Larsen P., Falch E. (1979). Partial agonists for brain GABA/benzodiazepine receptor complex. Nature 280331–333. 10.1038/280331a0
    1. Broqua P., Wettstein J. G., Rocher M. N., Gauthier-Martin B., Junien J. L. (1995). Behavioral effects of neuropeptide Y receptor agonists in the elevated plus-maze and fear-potentiated startle procedures. Behav. Pharmacol. 6 215–222. 10.1097/00008877-199504000-00001
    1. Brown J. A., Ramikie T. S., Schmidt M. J., Baldi R., Garbett K., Everheart M. G., et al. (2015). Inhibition of parvalbumin-expressing interneurons results in complex behavioral changes. Mol. Psychiatry 20 1499–1507. 10.1038/mp.2014.192
    1. Caberlotto L., Jimenez P., Overstreet D. H., Hurd Y. L., Mathe A. A., Fuxe K. (1999). Alterations in neuropeptide Y levels and Y1 binding sites in the Flinders Sensitive Line rats, a genetic animal model of depression. Neurosci. Lett. 265 191–194. 10.1016/S0304-3940(99)00234-7
    1. Caldji C., Diorio J., Meaney M. J. (2000). Variations in maternal care in infancy regulate the development of stress reactivity. Biol. Psychiatry 48 1164–1174. 10.1016/S0006-3223(00)01084-2
    1. Caldji C., Diorio J., Meaney M. J. (2003). Variations in maternal care alter GABA(A) receptor subunit expression in brain regions associated with fear. Neuropsychopharmacology 28 1950–1959. 10.1038/sj.npp.1300237
    1. Campos A. C., Fogaca M. V., Scarante F. F., Joca S. R. L., Sales A. J., Gomes F. V., et al. (2017). Plastic and neuroprotective mechanisms involved in the therapeutic effects of cannabidiol in psychiatric disorders. Front. Pharmacol. 8:269. 10.3389/fphar.2017.00269
    1. Campos A. C., Ortega Z., Palazuelos J., Fogaca M. V., Aguiar D. C., Diaz-Alonso J., et al. (2013). The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis: involvement of the endocannabinoid system. Int. J. Neuropsychopharmacol. 16 1407–1419. 10.1017/S1461145712001502
    1. Carlton S. M., Zhou S., Du J., Hargett G. L., Ji G., Coggeshall R. E. (2004). Somatostatin modulates the transient receptor potential vanilloid 1 (TRPV1) ion channel. Pain 110 616–627. 10.1016/j.pain.2004.04.042
    1. Celada P., Puig M. V., Artigas F. (2013). Serotonin modulation of cortical neurons and networks. Front. Integr. Neurosci. 7:25 10.3389/fnint.2013.00025
    1. Celada P., Puig M. V., Casanovas J. M., Guillazo G., Artigas F. (2001). Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A), and glutamate receptors. J. Neurosci. 21 9917–9929. 10.1523/JNEUROSCI.21-24-09917.2001
    1. Chandra D., Korpi E. R., Miralles C. P., De Blas A. L., Homanics G. E. (2005). GABAA receptor gamma 2 subunit knockdown mice have enhanced anxiety-like behavior but unaltered hypnotic response to benzodiazepines. BMC Neurosci. 6:30. 10.1186/1471-2202-6-30
    1. Choudary P. V., Molnar M., Evans S. J., Tomita H., Li J. Z., Vawter M. P., et al. (2005). Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc. Natl. Acad. Sci. U.S.A. 102 15653–15658. 10.1073/pnas.0507901102
    1. Cotter D., Landau S., Beasley C., Stevenson R., Chana G., MacMillan L., et al. (2002). The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia. Biol. Psychiatry 51 377–386. 10.1016/S0006-3223(01)01243-4
    1. Crestani F., Lorez M., Baer K., Essrich C., Benke D., Laurent J. P., et al. (1999). Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat. Neurosci. 2 833–839. 10.1038/12207
    1. Crippa J. A., Guimaraes F. S., Campos A. C., Zuardi A. W. (2018). Translational investigation of the therapeutic potential of cannabidiol (CBD): toward a new age. Front. Immunol. 9:2009. 10.3389/fimmu.2018.02009
    1. Cross J. A., Cheetham S. C., Crompton M. R., Katona C. L., Horton R. W. (1988). Brain GABAB binding sites in depressed suicide victims. Psychiatry Res. 26 119–129. 10.1016/0165-1781(88)90066-2
    1. Crowley S. K., Girdler S. S. (2014). Neurosteroid, GABAergic and hypothalamic pituitary adrenal (HPA) axis regulation: what is the current state of knowledge in humans? Psychopharmacology 231 3619–3634. 10.1007/s00213-014-3572-8
    1. Cryan J. F., Kaupmann K. (2005). Don’t worry ’B’ happy!: a role for GABA(B) receptors in anxiety and depression. Trends Pharmacol. Sci. 26 36–43. 10.1016/j.tips.2004.11.004
    1. Csabai D., Seress L., Varga Z., Abraham H., Miseta A., Wiborg O., et al. (2017). Electron microscopic analysis of hippocampal Axo-somatic synapses in a chronic stress model for depression. Hippocampus 27 17–27. 10.1002/hipo.22650
    1. Czéh B., Vardya I., Varga Z., Febbraro F., Csabai D., Martis L. S., et al. (2018). Long-term stress disrupts the structural and functional integrity of GABAergic neuronal networks in the medial prefrontal cortex of rats. Front. Cell. Neurosci. 12:148. 10.3389/fncel.2018.00148
    1. Czéh B., Varga Z. K., Henningsen K., Kovacs G. L., Miseta A., Wiborg O. (2015). Chronic stress reduces the number of GABAergic interneurons in the adult rat hippocampus, dorsal-ventral and region-specific differences. Hippocampus 25 393–405. 10.1002/hipo.22382
    1. De Jong M., Breeman W. A., Bernard H. F., Kooij P. P., Slooter G. D., Van Eijck C. H., et al. (1999). Therapy of neuroendocrine tumors with radiolabeled somatostatin-analogues. Q. J. Nucl. Med. 43 356–366.
    1. De Petrocellis L., Ligresti A., Moriello A. S., Allara M., Bisogno T., Petrosino S., et al. (2011). Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br. J. Pharmacol. 163 1479–1494. 10.1111/j.1476-5381.2010.01166.x
    1. DeFelipe J., Lopez-Cruz P. L., Benavides-Piccione R., Bielza C., Larranaga P., Anderson S., et al. (2013). New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat. Rev. Neurosci. 14 202–216. 10.1038/nrn3444
    1. Diana M. A., Marty A. (2004). Endocannabinoid-mediated short-term synaptic plasticity: depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). Br. J. Pharmacol. 142 9–19. 10.1038/sj.bjp.0705726
    1. Diorio D., Viau V., Meaney M. J. (1993). The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J. Neurosci. 13 3839–3847. 10.1523/JNEUROSCI.13-09-03839.1993
    1. Dong E., Matsumoto K., Uzunova V., Sugaya I., Takahata H., Nomura H., et al. (2001). Brain 5alpha-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation. Proc. Natl. Acad. Sci. U.S.A. 98 2849–2854. 10.1073/pnas.051628598
    1. Douillard-Guilloux G., Lewis D., Seney M. L., Sibille E. (2017). Decrease in somatostatin-positive cell density in the amygdala of females with major depression. Depress. Anxiety 34 68–78. 10.1002/da.22549
    1. Drugan R. C., Morrow A. L., Weizman R., Weizman A., Deutsch S. I., Crawley J. N., et al. (1989). Stress-induced behavioral depression in the rat is associated with a decrease in GABA receptor-mediated chloride ion flux and brain benzodiazepine receptor occupancy. Brain Res. 487 45–51. 10.1016/0006-8993(89)90938-4
    1. Dubin M. J., Mao X., Banerjee S., Goodman Z., Lapidus K. A., Kang G., et al. (2016). Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy. J. Psychiatry Neurosci. 41 E37–E45. 10.1503/jpn.150223
    1. Duman R. S., Aghajanian G. K., Sanacora G., Krystal J. H. (2016). Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat. Med. 22 238–249. 10.1038/nm.4050
    1. Dwivedi Y., Rizavi H. S., Conley R. R., Roberts R. C., Tamminga C. A., Pandey G. N. (2003). Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch. Gen. Psychiatry 60 804–815. 10.1001/archpsyc.60.8.804
    1. Engin E., Benham R. S., Rudolph U. (2018). An emerging circuit pharmacology of GABAA receptors. Trends Pharmacol. Sci. 39 710–732. 10.1016/j.tips.2018.04.003
    1. Engin E., Stellbrink J., Treit D., Dickson C. T. (2008). Anxiolytic and antidepressant effects of intracerebroventricularly administered somatostatin: behavioral and neurophysiological evidence. Neuroscience 157 666–676. 10.1016/j.neuroscience.2008.09.037
    1. Engin E., Treit D. (2009). Anxiolytic and antidepressant actions of somatostatin: the role of sst2 and sst3 receptors. Psychopharmacology 206 281–289. 10.1007/s00213-009-1605-5
    1. Faron-Gorecka A., Kusmider M., Kolasa M., Zurawek D., Szafran-Pilch K., Gruca P., et al. (2016). Chronic mild stress alters the somatostatin receptors in the rat brain. Psychopharmacology 233 255–266. 10.1007/s00213-015-4103-y
    1. Faron-Gorecka A., Kusmider M., Solich J., Kolasa M., Pabian P., Gruca P., et al. (2018). Regulation of somatostatin receptor 2 in the context of antidepressant treatment response in chronic mild stress in rat. Psychopharmacology 235 2137–2149. 10.1007/s00213-018-4912-x
    1. Fatemi S. H., Folsom T. D., Thuras P. D. (2011). Deficits in GABA(B) receptor system in schizophrenia and mood disorders: a postmortem study. Schizophr. Res. 128 37–43. 10.1016/j.schres.2010.12.025
    1. Fava M., McCall W. V., Krystal A., Wessel T., Rubens R., Caron J., et al. (2006). Eszopiclone co-administered with fluoxetine in patients with insomnia coexisting with major depressive disorder. Biol. Psychiatry 59 1052–1060. 10.1016/j.biopsych.2006.01.016
    1. Fava M., Schaefer K., Huang H., Wilson A., Iosifescu D. V., Mischoulon D., et al. (2011). A post hoc analysis of the effect of nightly administration of eszopiclone and a selective serotonin reuptake inhibitor in patients with insomnia and anxious depression. J. Clin. Psychiatry 72 473–479. 10.4088/JCP.09m05131gry
    1. Fee C., Banasr M., Sibille E. (2017). Somatostatin-positive gamma-aminobutyric acid interneuron deficits in depression: cortical microcircuit and therapeutic perspectives. Biol. Psychiatry 82 549–559. 10.1016/j.biopsych.2017.05.024
    1. Ferguson B. R., Gao W. J. (2018). PV interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front. Neural Circuits 12:37. 10.3389/fncir.2018.00037
    1. Filipovic D., Zlatkovic J., Gass P., Inta D. (2013). The differential effects of acute vs. chronic stress and their combination on hippocampal parvalbumin and inducible heat shock protein 70 expression. Neuroscience 236 47–54. 10.1016/j.neuroscience.2013.01.033
    1. Fischell J., Van Dyke A. M., Kvarta M. D., LeGates T. A., Thompson S. M. (2015). Rapid antidepressant action and restoration of excitatory synaptic strength after chronic stress by negative modulators of alpha5-containing GABAA receptors. Neuropsychopharmacology 40 2499–2509. 10.1038/npp.2015.112
    1. Fogaça M. V., Campos A. C., Coelho L. D., Duman R. S., Guimaraes F. S. (2018). The anxiolytic effects of cannabidiol in chronically stressed mice are mediated by the endocannabinoid system: role of neurogenesis and dendritic remodeling. Neuropharmacology 135 22–33. 10.1016/j.neuropharm.2018.03.001
    1. Fogaça M. V., Lisboa S. F., Aguiar D. C., Moreira F. A., Gomes F. V., Casarotto P. C., et al. (2012). Fine-tuning of defensive behaviors in the dorsal periaqueductal gray by atypical neurotransmitters. Braz. J. Med. Biol. Res. 45 357–365. 10.1590/S0100-879X2012007500029
    1. Frankowska M., Filip M., Przegalinski E. (2007). Effects of GABAB receptor ligands in animal tests of depression and anxiety. Pharmacol. Rep. 59 645–655.
    1. Froestl W., Gallagher M., Jenkins H., Madrid A., Melcher T., Teichman S., et al. (2004). SGS742: the first GABAB receptor antagonist in clinical trials. Biochem. Pharmacol. 68 1479–1487. 10.1016/j.bcp.2004.07.030
    1. Frye M. A., Pazzaglia P. J., George M. S., Luckenbaugh D. A., Vanderham E., Davis C. L., et al. (2003). Low CSF somatostatin associated with response to nimodipine in patents with affective illness. Biol. Psychiatry 53 180–183. 10.1016/S0006-3223(02)01343-4
    1. Fuchs T., Jefferson S. J., Hooper A., Yee P. H., Maguire J., Luscher B. (2017). Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state. Mol. Psychiatry 22 920–930. 10.1038/mp.2016.188
    1. Fukumoto K., Fogaca M. V., Liu R. J., Duman C., Kato T., Li X. Y., et al. (2019). Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine. Proc. Natl. Acad. Sci. U.S.A. 116 297–302. 10.1073/pnas.1814709116
    1. Gabbay V., Mao X., Klein R. G., Ely B. A., Babb J. S., Panzer A. M., et al. (2012). Anterior cingulate cortex gamma-aminobutyric acid in depressed adolescents: relationship to anhedonia. Arch. Gen. Psychiatry 69 139–149. 10.1001/archgenpsychiatry.2011.131
    1. Gerner R. H., Hare T. A. (1981). CSF GABA in normal subjects and patients with depression, schizophrenia, mania, and anorexia nervosa. Am. J. Psychiatry 138 1098–1101. 10.1176/ajp.138.8.1098
    1. Ghosal S., Bang E., Yue W., Hare B. D., Lepack A. E., Girgenti M. J., et al. (2018). Activity-dependent brain-derived neurotrophic factor release is required for the rapid antidepressant actions of scopolamine. Biol. Psychiatry 83 29–37. 10.1016/j.biopsych.2017.06.017
    1. Ghosal S., Hare B., Duman R. S. (2017). Prefrontal cortex GABAergic deficits and circuit dysfunction in the pathophysiology and treatment of chronic stress and depression. Curr. Opin. Behav. Sci. 14 1–8. 10.1016/j.cobeha.2016.09.012
    1. Gilabert-Juan J., Castillo-Gomez E., Guirado R., Molto M. D., Nacher J. (2013). Chronic stress alters inhibitory networks in the medial prefrontal cortex of adult mice. Brain Struct. Funct. 218 1591–1605. 10.1007/s00429-012-0479-1
    1. Gilabert-Juan J., Varea E., Guirado R., Blasco-Ibanez J. M., Crespo C., Nacher J. (2012). Alterations in the expression of PSA-NCAM and synaptic proteins in the dorsolateral prefrontal cortex of psychiatric disorder patients. Neurosci. Lett. 530 97–102. 10.1016/j.neulet.2012.09.032
    1. Godfrey K. E. M., Gardner A. C., Kwon S., Chea W., Muthukumaraswamy S. D. (2018). Differences in excitatory and inhibitory neurotransmitter levels between depressed patients and healthy controls: a systematic review and meta-analysis. J. Psychiatr. Res. 105 33–44. 10.1016/j.jpsychires.2018.08.015
    1. Gold B. I., Bowers M. B., Jr., Roth R. H., Sweeney D. W. (1980). GABA levels in CSF of patients with psychiatric disorders. Am. J. Psychiatry 137 362–364. 10.1176/ajp.137.3.362
    1. Goren M. Z., Kucukibrahimoglu E., Berkman K., Terzioglu B. (2007). Fluoxetine partly exerts its actions through GABA: a neurochemical evidence. Neurochem. Res. 32 1559–1565. 10.1007/s11064-007-9357-2
    1. Gray J. A., Green A. R. (1987). Increased GABAB receptor function in mouse frontal cortex after repeated administration of antidepressant drugs or electroconvulsive shocks. Br. J. Pharmacol. 92 357–362. 10.1111/j.1476-5381.1987.tb11331.x
    1. Griffin L. D., Mellon S. H. (1999). Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc. Natl. Acad. Sci. U.S.A. 96 13512–13517. 10.1073/pnas.96.23.13512
    1. Guidotti A., Dong E., Matsumoto K., Pinna G., Rasmusson A. M., Costa E. (2001). The socially-isolated mouse: a model to study the putative role of allopregnanolone and 5alpha-dihydroprogesterone in psychiatric disorders. Brain Res. Brain Res. Rev. 37 110–115. 10.1016/S0165-0173(01)00129-1
    1. Guilloux J. P., Douillard-Guilloux G., Kota R., Wang X., Gardier A. M., Martinowich K., et al. (2012). Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression. Mol. Psychiatry 17 1130–1142. 10.1038/mp.2011.113
    1. Hallschmid M., Benedict C., Born J., Fehm H. L., Kern W. (2004). Manipulating central nervous mechanisms of food intake and body weight regulation by intranasal administration of neuropeptides in man. Physiol. Behav. 83 55–64. 10.1016/S0031-9384(04)00349-X
    1. Hallschmid M., Gais S., Meinert S., Born J. (2003). NPY attenuates positive cortical DC-potential shift upon food intake in man. Psychoneuroendocrinology 28 529–539. 10.1016/S0306-4530(02)00038-0
    1. Harmer C. J., Duman R. S., Cowen P. J. (2017). How do antidepressants work? New perspectives for refining future treatment approaches. Lancet Psychiatry 4 409–418. 10.1016/S2215-0366(17)30015-9
    1. Hasler G., van der Veen J. W., Grillon C., Drevets W. C., Shen J. (2010). Effect of acute psychological stress on prefrontal GABA concentration determined by proton magnetic resonance spectroscopy. Am. J. Psychiatry 167 1226–1231. 10.1176/appi.ajp.2010.09070994
    1. Hasler G., van der Veen J. W., Tumonis T., Meyers N., Shen J., Drevets W. C. (2007). Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry 64 193–200. 10.1001/archpsyc.64.2.193
    1. Heese K., Otten U., Mathivet P., Raiteri M., Marescaux C., Bernasconi R. (2000). GABA(B) receptor antagonists elevate both mRNA and protein levels of the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) but not neurotrophin-3 (NT-3) in brain and spinal cord of rats. Neuropharmacology 39 449–462. 10.1016/S0028-3908(99)00166-5
    1. Heilig M., McLeod S., Koob G. K., Britton K. T. (1992). Anxiolytic-like effect of neuropeptide Y (NPY), but not other peptides in an operant conflict test. Regul. Pept. 41 61–69. 10.1016/0167-0115(92)90514-U
    1. Heilig M., Murison R. (1987). Intracerebroventricular neuropeptide Y protects against stress-induced gastric erosion in the rat. Eur. J. Pharmacol. 137 127–129. 10.1016/0014-2999(87)90191-9
    1. Heilig M., Soderpalm B., Engel J. A., Widerlov E. (1989). Centrally administered neuropeptide Y (NPY) produces anxiolytic-like effects in animal anxiety models. Psychopharmacology 98 524–529. 10.1007/BF00441953
    1. Heilig M., Zachrisson O., Thorsell A., Ehnvall A., Mottagui-Tabar S., Sjögren M., et al. (2004). Decreased cerebrospinal fluid neuropeptide Y (NPY) in patients with treatment refractory unipolar major depression: preliminary evidence for association with preproNPY gene polymorphism. J. Psychiatr. Res. 38 113–121. 10.1016/S0022-3956(03)00101-8
    1. Heinzel A., Steinke R., Poeppel T. D., Grosser O., Bogerts B., Otto H., et al. (2008). S-ketamine and GABA-A-receptor interaction in humans: an exploratory study with I-123-iomazenil SPECT. Hum. Psychopharmacol. 23 549–554. 10.1002/hup.960
    1. Hewitt S. A., Wamsteeker J. I., Kurz E. U., Bains J. S. (2009). Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. Nat. Neurosci. 12 438–443. 10.1038/nn.2274
    1. Hill E. L., Gallopin T., Ferezou I., Cauli B., Rossier J., Schweitzer P., et al. (2007). Functional CB1 receptors are broadly expressed in neocortical GABAergic and glutamatergic neurons. J. Neurophysiol. 97 2580–2589. 10.1152/jn.00603.2006
    1. Hill M. N., McLaughlin R. J., Pan B., Fitzgerald M. L., Roberts C. J., Lee T. T., et al. (2011). Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response. J. Neurosci. 31 10506–10515. 10.1523/JNEUROSCI.0496-11.2011
    1. Hofland L. J., van Koetsveld P. M., Wouters N., Waaijers M., Reubi J. C., Lamberts S. W. (1992). Dissociation of antiproliferative and antihormonal effects of the somatostatin analog octreotide on 7315b pituitary tumor cells. Endocrinology 131 571–577.
    1. Jacobson L. H., Vlachou S., Slattery D. A., Li X., Cryan J. F. (2018). The gamma-aminobutyric acid b receptor in depression and reward. Biol. Psychiatry 83 963–976. 10.1016/j.biopsych.2018.02.006
    1. Jiang N., Furue H., Katafuchi T., Yoshimura M. (2003). Somatostatin directly inhibits substantia gelatinosa neurons in adult rat spinal dorsal horn in vitro. Neurosci. Res. 47 97–107. 10.1016/S0168-0102(03)00183-4
    1. Jonas J. M., Cohon M. S. (1993). A comparison of the safety and efficacy of alprazolam versus other agents in the treatment of anxiety, panic, and depression: a review of the literature. J. Clin. Psychiatry 54(Suppl.), 25–45; discussion 46–28.
    1. Jovanovic J. N., Thomas P., Kittler J. T., Smart T. G., Moss S. J. (2004). Brain-derived neurotrophic factor modulates fast synaptic inhibition by regulating GABA(A) receptor phosphorylation, activity, and cell-surface stability. J. Neurosci. 24 522–530. 10.1523/JNEUROSCI.3606-03.2004
    1. Kanes S., Colquhoun H., Gunduz-Bruce H., Raines S., Arnold R., Schacterle A., et al. (2017). Brexanolone (SAGE-547 injection) in post-partum depression: a randomised controlled trial. Lancet 390 480–489. 10.1016/S0140-6736(17)31264-3
    1. Kanes S. J., Colquhoun H., Doherty J., Raines S., Hoffmann E., Rubinow D. R., et al. (2017). Open-label, proof-of-concept study of brexanolone in the treatment of severe postpartum depression. Hum. Psychopharmacol. 32:e2576. 10.1002/hup.2576
    1. Karch D. L., Dahlberg L. L., Patel N., Davis T. W., Logan J. E., Hill H. A., et al. (2009). Surveillance for violent deaths–national violent death reporting system, 16 States, 2006. MMWR Surveill. Summ. 58 1–44.
    1. Karlsson R. M., Choe J. S., Cameron H. A., Thorsell A., Crawley J. N., Holmes A., et al. (2008). The neuropeptide Y Y1 receptor subtype is necessary for the anxiolytic-like effects of neuropeptide Y, but not the antidepressant-like effects of fluoxetine, in mice. Psychopharmacology 195 547–557. 10.1007/s00213-007-0945-2
    1. Karolewicz B., Maciag D., O’Dwyer G., Stockmeier C. A., Feyissa A. M., Rajkowska G. (2010). Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression. Int. J. Neuropsychopharmacol. 13 411–420. 10.1017/S1461145709990587
    1. Kato T., Fogaca M. V., Deyama S., Li X. Y., Fukumoto K., Duman R. S. (2018). BDNF release and signaling are required for the antidepressant actions of GLYX-13. Mol. Psychiatry 23 2007–2017. 10.1038/mp.2017.220
    1. Kaupmann K., Huggel K., Heid J., Flor P. J., Bischoff S., Mickel S. J., et al. (1997). Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature 386 239–246. 10.1038/386239a0
    1. Kessler R. C., Chiu W. T., Demler O., Merikangas K. R., Walters E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62 617–627. 10.1001/archpsyc.62.6.617
    1. Khisti R. T., Chopde C. T., Jain S. P. (2000). Antidepressant-like effect of the neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one in mice forced swim test. Pharmacol. Biochem. Behav. 67 137–143. 10.1016/S0091-3057(00)00300-2
    1. Kim Y. K., Lee H. P., Won S. D., Park E. Y., Lee H. Y., Lee B. H., et al. (2007). Low plasma BDNF is associated with suicidal behavior in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 31 78–85.
    1. Klempan T. A., Sequeira A., Canetti L., Lalovic A., Ernst C., ffrench-Mullen J., et al. (2009). Altered expression of genes involved in ATP biosynthesis and GABAergic neurotransmission in the ventral prefrontal cortex of suicides with and without major depression. Mol. Psychiatry 14 175–189. 10.1038/sj.mp.4002110
    1. Krystal A., Fava M., Rubens R., Wessel T., Caron J., Wilson P., et al. (2007). Evaluation of eszopiclone discontinuation after cotherapy with fluoxetine for insomnia with coexisting depression. J. Clin. Sleep Med. 3 48–55.
    1. Kucukibrahimoglu E., Saygin M. Z., Caliskan M., Kaplan O. K., Unsal C., Goren M. Z. (2009). The change in plasma GABA, glutamine and glutamate levels in fluoxetine- or S-citalopram-treated female patients with major depression. Eur. J. Clin. Pharmacol. 65 571–577. 10.1007/s00228-009-0650-7
    1. Kuehner C. (2017). Why is depression more common among women than among men? Lancet Psychiatry 4 146–158. 10.1016/S2215-0366(16)30263-2
    1. Lacroix J. S., Mosimann B. L. (1996). Attenuation of allergen-evoked nasal responses by local pretreatment with exogenous neuropeptide Y in atopic patients. J. Allergy Clin. Immunol. 98 611–616. 10.1016/S0091-6749(96)70095-7
    1. Lacroix J. S., Ricchetti A. P., Morel D., Mossimann B., Waeber B., Grouzmann E. (1996). Intranasal administration of neuropeptide Y in man: systemic absorption and functional effects. Br. J. Pharmacol. 118 2079–2084. 10.1111/j.1476-5381.1996.tb15647.x
    1. Larhammar D., Salaneck E. (2004). Molecular evolution of NPY receptor subtypes. Neuropeptides 38 141–151. 10.1016/j.npep.2004.06.002
    1. Lepack A. E., Bang E., Lee B., Dwyer J. M., Duman R. S. (2016). Fast-acting antidepressants rapidly stimulate ERK signaling and BDNF release in primary neuronal cultures. Neuropharmacology 111 242–252. 10.1016/j.neuropharm.2016.09.011
    1. Lepack A. E., Fuchikami M., Dwyer J. M., Banasr M., Duman R. S. (2014). BDNF release is required for the behavioral actions of ketamine. Int. J. Neuropsychopharmacol. 18:yu033. 10.1093/ijnp/pyu033
    1. Li N., Lee B., Liu R. J., Banasr M., Dwyer J. M., Iwata M., et al. (2010). mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329 959–964. 10.1126/science.1190287
    1. Lin L. C., Sibille E. (2015). Somatostatin, neuronal vulnerability and behavioral emotionality. Mol. Psychiatry 20 377–387. 10.1038/mp.2014.184
    1. Liu C. Y., Jiang X. X., Zhu Y. H., Wei D. N. (2012). Metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine produces antidepressant effects in rats: role of brain-derived neurotrophic factor. Neuroscience 223 219–224. 10.1016/j.neuroscience.2012.08.010
    1. Llado-Pelfort L., Santana N., Ghisi V., Artigas F., Celada P. (2012). 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons. Cereb. Cortex 22 1487–1497. 10.1093/cercor/bhr220
    1. Lloyd K. G., Thuret F., Pilc A. (1985). Upregulation of gamma-aminobutyric acid (GABA) B binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock. J. Pharmacol. Exp. Ther. 235 191–199.
    1. Luscher B., Shen Q., Sahir N. (2011). The GABAergic deficit hypothesis of major depressive disorder. Mol. Psychiatry 16 383–406. 10.1038/mp.2010.120
    1. Ma K., Xu A., Cui S., Sun M. R., Xue Y. C., Wang J. H. (2016). Impaired GABA synthesis, uptake and release are associated with depression-like behaviors induced by chronic mild stress. Transl. Psychiatry 6:e910. 10.1038/tp.2016.181
    1. Maciag D., Hughes J., O’Dwyer G., Pride Y., Stockmeier C. A., Sanacora G., et al. (2010). Reduced density of calbindin immunoreactive GABAergic neurons in the occipital cortex in major depression: relevance to neuroimaging studies. Biol. Psychiatry 67 465–470. 10.1016/j.biopsych.2009.10.027
    1. MacQueen G. M., Yucel K., Taylor V. H., Macdonald K., Joffe R. (2008). Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder. Biol. Psychiatry 64 880–883. 10.1016/j.biopsych.2008.06.027
    1. Maggi A., Perez J. (1986). Estrogen-induced up-regulation of gamma-aminobutyric acid receptors in the CNS of rodents. J. Neurochem. 471793–1797. 10.1111/j.1471-4159.1986.tb13090.x
    1. Maguire J., Mody I. (2007). Neurosteroid synthesis-mediated regulation of GABA(A) receptors: relevance to the ovarian cycle and stress. J. Neurosci. 27 2155–2162. 10.1523/JNEUROSCI.4945-06.2007
    1. Markram H., Toledo-Rodriguez M., Wang Y., Gupta A., Silberberg G., Wu C. (2004). Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5 793–807. 10.1038/nrn1519
    1. Martin P., Pichat P., Massol J., Soubrie P., Lloyd K. G., Puech A. J. (1989). Decreased GABA B receptors in helpless rats: reversal by tricyclic antidepressants. Neuropsychobiology 22 220–224. 10.1159/000118620
    1. Matsumoto K., Puia G., Dong E., Pinna G. (2007). GABA(A) receptor neurotransmission dysfunction in a mouse model of social isolation-induced stress: possible insights into a non-serotonergic mechanism of action of SSRIs in mood and anxiety disorders. Stress 10 3–12. 10.1080/10253890701200997
    1. McKlveen J. M., Morano R. L., Fitzgerald M., Zoubovsky S., Cassella S. N., Scheimann J. R., et al. (2016). Chronic stress increases prefrontal inhibition: a mechanism for stress-induced prefrontal dysfunction. Biol. Psychiatry 80 754–764. 10.1016/j.biopsych.2016.03.2101
    1. Meis S., Sosulina L., Schulz S., Hollt V., Pape H. C. (2005). Mechanisms of somatostatin-evoked responses in neurons of the rat lateral amygdala. Eur. J. Neurosci. 21 755–762. 10.1111/j.1460-9568.2005.03922.x
    1. Melas P. A., Mannervik M., Mathe A. A., Lavebratt C. (2012). Neuropeptide Y: identification of a novel rat mRNA splice-variant that is downregulated in the hippocampus and the prefrontal cortex of a depression-like model. Peptides 35 49–55. 10.1016/j.peptides.2012.02.020
    1. Meltzer-Brody S., Colquhoun H., Riesenberg R., Epperson C. N., Deligiannidis K. M., Rubinow D. R., et al. (2018). Brexanolone injection in post-partum depression: two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet 392 1058–1070. 10.1016/S0140-6736(18)31551-4
    1. Merali Z., Du L., Hrdina P., Palkovits M., Faludi G., Poulter M. O., et al. (2004). Dysregulation in the suicide brain: mRNA expression of corticotropin-releasing hormone receptors and GABA(A) receptor subunits in frontal cortical brain region. J. Neurosci. 24 1478–1485. 10.1523/JNEUROSCI.4734-03.2004
    1. Milak M. S., Proper C. J., Mulhern S. T., Parter A. L., Kegeles L. S., Ogden R. T., et al. (2016). A pilot in vivo proton magnetic resonance spectroscopy study of amino acid neurotransmitter response to ketamine treatment of major depressive disorder. Mol. Psychiatry 21 320–327. 10.1038/mp.2015.83
    1. Moghaddam B., Adams B., Verma A., Daly D. (1997). Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J. Neurosci. 17 2921–2927. 10.1523/JNEUROSCI.17-08-02921.1997
    1. Mohler H., Fritschy J. M., Rudolph U. (2002). A new benzodiazepine pharmacology. J. Pharmacol. Exp. Ther. 300 2–8. 10.1124/jpet.300.1.2
    1. Mombereau C., Kaupmann K., Froestl W., Sansig G., van der Putten H., Cryan J. F. (2004). Genetic and pharmacological evidence of a role for GABA(B) receptors in the modulation of anxiety- and antidepressant-like behavior. Neuropsychopharmacology 29 1050–1062. 10.1038/sj.npp.1300413
    1. Naert G., Maurice T., Tapia-Arancibia L., Givalois L. (2007). Neuroactive steroids modulate HPA axis activity and cerebral brain-derived neurotrophic factor (BDNF) protein levels in adult male rats. Psychoneuroendocrinology 32 1062–1078. 10.1016/j.psyneuen.2007.09.002
    1. Nakagawa Y., Sasaki A., Takashima T. (1999). The GABA(B) receptor antagonist CGP36742 improves learned helplessness in rats. Eur. J. Pharmacol. 381 1–7. 10.1016/S0014-2999(99)00567-1
    1. Nikisch G., Agren H., Eap C. B., Czernik A., Baumann P., Mathe A. A. (2005). Neuropeptide Y and corticotropin-releasing hormone in CSF mark response to antidepressive treatment with citalopram. Int. J. Neuropsychopharmacol. 8 403–410. 10.1017/S1461145705005158
    1. Nin M. S., Martinez L. A., Pibiri F., Nelson M., Pinna G. (2011). Neurosteroids reduce social isolation-induced behavioral deficits: a proposed link with neurosteroid-mediated upregulation of BDNF expression. Front. Endocrinol. 2:73. 10.3389/fendo.2011.00073
    1. Northoff G., Sibille E. (2014). Why are cortical GABA neurons relevant to internal focus in depression? A cross-level model linking cellular, biochemical and neural network findings. Mol. Psychiatry 19 966–977. 10.1038/mp.2014.68
    1. Nowak B., Zadrozna M., Ossowska G., Sowa-Kucma M., Gruca P., Papp M., et al. (2010). Alterations in hippocampal calcium-binding neurons induced by stress models of depression: a preliminary assessment. Pharmacol. Rep. 62 1204–1210. 10.1016/S1734-1140(10)70383-2
    1. Nowak G., Partyka A., Palucha A., Szewczyk B., Wieronska J. M., Dybala M., et al. (2006). Antidepressant-like activity of CGP 36742 and CGP 51176, selective GABAB receptor antagonists, in rodents. Br. J. Pharmacol. 149581–590. 10.1038/sj.bjp.0706845
    1. Nyitrai G., Kekesi K. A., Emri Z., Szarics E., Juhasz G., Kardos J. (2003). GABA(B) receptor antagonist CGP-36742 enhances somatostatin release in the rat hippocampus in vivo and in vitro. Eur. J. Pharmacol. 478 111–119. 10.1016/j.ejphar.2003.08.006
    1. Nyitrai G., Szarics E., Kovacs I., Kekesi K. A., Juhasz G., Kardos J. (1999). Effect of CGP 36742 on the extracellular level of neurotransmitter amino acids in the thalamus. Neurochem. Int. 34 391–398. 10.1016/S0197-0186(99)00042-X
    1. Ordway G. A., Stockmeier C. A., Meltzer H. Y., Overholser J. C., Jaconetta S., Widdowson P. S. (1995). Neuropeptide Y in frontal cortex is not altered in major depression. J. Neurochem. 65 1646–1650. 10.1046/j.1471-4159.1995.65041646.x
    1. Otero Losada M. E. (1988). Changes in central GABAergic function following acute and repeated stress. Br. J. Pharmacol. 93 483–490. 10.1111/j.1476-5381.1988.tb10302.x
    1. Pawlikowski M., Melen-Mucha G. (2003). Perspectives of new potential therapeutic applications of somatostatin analogs. Neuro Endocrinol. Lett. 24 21–27.
    1. Pehrson A. L., Sanchez C. (2015). Altered gamma-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Des. Devel. Ther. 9 603–624. 10.2147/DDDT.S62912
    1. Perova Z., Delevich K., Li B. (2015). Depression of excitatory synapses onto parvalbumin interneurons in the medial prefrontal cortex in susceptibility to stress. J. Neurosci. 35 3201–3206. 10.1523/JNEUROSCI.2670-14.2015
    1. Perrine S. A., Ghoddoussi F., Michaels M. S., Sheikh I. S., McKelvey G., Galloway M. P. (2014). Ketamine reverses stress-induced depression-like behavior and increased GABA levels in the anterior cingulate: an 11.7 T 1H-MRS study in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 51 9–15. 10.1016/j.pnpbp.2013.11.003
    1. Pettit D. A., Harrison M. P., Olson J. M., Spencer R. F., Cabral G. A. (1998). Immunohistochemical localization of the neural cannabinoid receptor in rat brain. J. Neurosci. Res. 51 391–402. 10.1002/(SICI)1097-4547(19980201)51:3<391::AID-JNR12>;2-A
    1. Petty F., Sherman A. D. (1984). Plasma GABA levels in psychiatric illness. J. Affect. Disord. 6 131–138. 10.1016/0165-0327(84)90018-1
    1. Petty F., Trivedi M. H., Fulton M., Rush A. J. (1995). Benzodiazepines as antidepressants: does GABA play a role in depression? Biol. Psychiatry 38 578–591.
    1. Piantadosi S. C., French B. J., Poe M. M., Timic T., Markovic B. D., Pabba M., et al. (2016). Sex-dependent anti-stress effect of an alpha5 subunit containing GABAA receptor positive allosteric modulator. Front. Pharmacol. 7:446. 10.3389/fphar.2016.00446
    1. Pich E. M., Agnati L. F., Zini I., Marrama P., Carani C. (1993). Neuropeptide Y produces anxiolytic effects in spontaneously hypertensive rats. Peptides 14 909–912. 10.1016/0196-9781(93)90065-O
    1. Pinna G., Costa E., Guidotti A. (2006). Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. Psychopharmacology 186 362–372. 10.1007/s00213-005-0213-2
    1. Pinna G., Costa E., Guidotti A. (2009). SSRIs act as selective brain steroidogenic stimulants (SBSSs) at low doses that are inactive on 5-HT reuptake. Curr. Opin. Pharmacol. 9 24–30. 10.1016/j.coph.2008.12.006
    1. Pinter E., Helyes Z., Szolcsanyi J. (2006). Inhibitory effect of somatostatin on inflammation and nociception. Pharmacol. Ther. 112 440–456. 10.1016/j.pharmthera.2006.04.010
    1. Poleszak E., Wosko S., Slawinska K., Szopa A., Wrobel A., Serefko A. (2018). Cannabinoids in depressive disorders. Life Sci. 213 18–24. 10.1016/j.lfs.2018.09.058
    1. Post R. M., Ketter T. A., Joffe R. T., Kramlinger K. L. (1991). Lack of beneficial effects of l-baclofen in affective disorder. Int. Clin. Psychopharmacol. 6 197–207. 10.1097/00004850-199100640-00001
    1. Prescot A., Sheth C., Legarreta M., Renshaw P. F., McGlade E., Yurgelun-Todd D. (2018). Altered cortical gamma-amino butyric acid in female veterans with suicidal behavior: sex differences and clinical correlates. Chronic Stress 2. 10.1177/2470547018768771
    1. Prevot T. D., Gastambide F., Viollet C., Henkous N., Martel G., Epelbaum J., et al. (2017). Roles of hippocampal somatostatin receptor subtypes in stress response and emotionality. Neuropsychopharmacology 42 1647–1656. 10.1038/npp.2016.281
    1. Puig M. V., Santana N., Celada P., Mengod G., Artigas F. (2004). In vivo excitation of GABA interneurons in the medial prefrontal cortex through 5-HT3 receptors. Cereb. Cortex 14 1365–1375. 10.1093/cercor/bhh097
    1. Radley J. J., Gosselink K. L., Sawchenko P. E. (2009). A discrete GABAergic relay mediates medial prefrontal cortical inhibition of the neuroendocrine stress response. J. Neurosci. 29 7330–7340. 10.1523/JNEUROSCI.5924-08.2009
    1. Rajkowska G., O’Dwyer G., Teleki Z., Stockmeier C. A., Miguel-Hidalgo J. J. (2007). GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology 32 471–482. 10.1038/sj.npp.1301234
    1. Reddy M. S. (2010). Depression: the disorder and the burden. Indian J. Psychol. Med. 32 1–2. 10.4103/0253-7176.70510
    1. Redrobe J. P., Dumont Y., Fournier A., Quirion R. (2002a). The neuropeptide Y (NPY) Y1 receptor subtype mediates NPY-induced antidepressant-like activity in the mouse forced swimming test. Neuropsychopharmacology 26 615–624.
    1. Redrobe J. P., Dumont Y., Quirion R. (2002b). Neuropeptide Y (NPY) and depression: from animal studies to the human condition. Life Sci. 71 2921–2937.
    1. Ren Z., Pribiag H., Jefferson S. J., Shorey M., Fuchs T., Stellwagen D., et al. (2016). Bidirectional homeostatic regulation of a depression-related brain state by gamma-aminobutyric acidergic deficits and ketamine treatment. Biol. Psychiatry 80 457–468. 10.1016/j.biopsych.2016.02.009
    1. Robinson R. T., Drafts B. C., Fisher J. L. (2003). Fluoxetine increases GABA(A) receptor activity through a novel modulatory site. J. Pharmacol. Exp. Ther. 304 978–984. 10.1124/jpet.102.044834
    1. Rodriguez-Landa J. F., Contreras C. M., Bernal-Morales B., Gutierrez-Garcia A. G., Saavedra M. (2007). Allopregnanolone reduces immobility in the forced swimming test and increases the firing rate of lateral septal neurons through actions on the GABAA receptor in the rat. J. Psychopharmacol. 21 76–84. 10.1177/0269881106064203
    1. Romeo E., Strohle A., Spalletta G., di Michele F., Hermann B., Holsboer F., et al. (1998). Effects of antidepressant treatment on neuroactive steroids in major depression. Am. J. Psychiatry 155 910–913. 10.1176/ajp.155.7.910
    1. Rosa P. B., Neis V. B., Ribeiro C. M., Moretti M., Rodrigues A. L. (2016). Antidepressant-like effects of ascorbic acid and ketamine involve modulation of GABAA and GABAB receptors. Pharmacol. Rep. 68 996–1001. 10.1016/j.pharep.2016.05.010
    1. Rubinow D. R., Gold P. W., Post R. M., Ballenger J. C. (1985). CSF somatostatin in affective illness and normal volunteers. Prog. Neuropsychopharmacol. Biol. Psychiatry 9 393–400.
    1. Rudolph U., Knoflach F. (2011). Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nat. Rev. Drug Discov. 10 685–697. 10.1038/nrd3502
    1. Rudy B., Fishell G., Lee S., Hjerling-Leffler J. (2011). Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev. Neurobiol. 71 45–61. 10.1002/dneu.20853
    1. Russo E. B., Burnett A., Hall B., Parker K. K. (2005). Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem. Res. 30 1037–1043. 10.1007/s11064-005-6978-1
    1. Sage Therapeutics (2017). Sage Therapeutics Reports Positive Top-Line Results from Phase 2 Placebo-Controlled Trial of SAGE-217 in Major Depressive Disorder [Press Release]. Cambridge, MA: Sage Therapeutics.
    1. Sajdyk T. J., Johnson P. L., Leitermann R. J., Fitz S. D., Dietrich A., Morin M., et al. (2008). Neuropeptide Y in the amygdala induces long-term resilience to stress-induced reductions in social responses but not hypothalamic-adrenal-pituitary axis activity or hyperthermia. J. Neurosci. 28 893–903. 10.1523/JNEUROSCI.0659-07.2008
    1. Sales A. J., Fogaca M. V., Sartim A. G., Pereira V. S., Wegener G., Guimaraes F. S., et al. (2018). Cannabidiol induces rapid and sustained antidepressant-like effects through increased BDNF signaling and synaptogenesis in the prefrontal cortex. Mol. Neurobiol. 10.1007/s12035-018-1143-4 [Epub ahead of print].
    1. Sanacora G., Gueorguieva R., Epperson C. N., Wu Y. T., Appel M., Rothman D. L., et al. (2004). Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch. Gen. Psychiatry 61 705–713. 10.1001/archpsyc.61.7.705
    1. Sanacora G., Mason G. F., Rothman D. L., Behar K. L., Hyder F., Petroff O. A., et al. (1999). Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry 56 1043–1047. 10.1001/archpsyc.56.11.1043
    1. Santana N., Bortolozzi A., Serrats J., Mengod G., Artigas F. (2004). Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb. Cortex 14 1100–1109. 10.1093/cercor/bhh070
    1. Savitz J., Drevets W. C. (2009). Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neurosci. Biobehav. Rev. 33 699–771. 10.1016/j.neubiorev.2009.01.004
    1. Sayed S., Van Dam N. T., Horn S. R., Kautz M. M., Parides M., Costi S., et al. (2018). A randomized dose-ranging study of neuropeptide Y in patients with posttraumatic stress disorder. Int. J. Neuropsychopharmacol. 21 3–11. 10.1093/ijnp/pyx109
    1. Schiavon A. P., Bonato J. M., Milani H., Guimaraes F. S., Weffort de Oliveira R. M. (2016). Influence of single and repeated cannabidiol administration on emotional behavior and markers of cell proliferation and neurogenesis in non-stressed mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 64 27–34. 10.1016/j.pnpbp.2015.06.017
    1. Sequeira A., Klempan T., Canetti L., ffrench-Mullen J., Benkelfat C., Rouleau G. A., et al. (2007). Patterns of gene expression in the limbic system of suicides with and without major depression. Mol. Psychiatry 12 640–655. 10.1038/sj.mp.4001969
    1. Serrats J., Artigas F., Mengod G., Cortes R. (2003). GABAB receptor mRNA in the raphe nuclei: co-expression with serotonin transporter and glutamic acid decarboxylase. J. Neurochem. 84 743–752. 10.1046/j.1471-4159.2003.01557.x
    1. Shalaby A., Kamal S. (2009). Effect of Escitalopram on GABA level and anti-oxidant markers in prefrontal cortex and nucleus accumbens of chronic mild stress-exposed albino rats. Int. J. Physiol. Pathophysiol. Pharmacol. 1 154–161.
    1. Shen Q., Lal R., Luellen B. A., Earnheart J. C., Andrews A. M., Luscher B. (2010). gamma-Aminobutyric acid-type A receptor deficits cause hypothalamic-pituitary-adrenal axis hyperactivity and antidepressant drug sensitivity reminiscent of melancholic forms of depression. Biol. Psychiatry 68 512–520. 10.1016/j.biopsych.2010.04.024
    1. Shepard R., Coutellier L. (2018). Changes in the prefrontal glutamatergic and parvalbumin systems of mice exposed to unpredictable chronic stress. Mol. Neurobiol. 55 2591–2602. 10.1007/s12035-017-0528-0
    1. Shepard R., Page C. E., Coutellier L. (2016). Sensitivity of the prefrontal GABAergic system to chronic stress in male and female mice: relevance for sex differences in stress-related disorders. Neuroscience 332 1–12. 10.1016/j.neuroscience.2016.06.038
    1. Shimizu E., Hashimoto K., Okamura N., Koike K., Komatsu N., Kumakiri C., et al. (2003). Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol. Psychiatry 54 70–75. 10.1016/S0006-3223(03)00181-1
    1. Sibille E., Morris H. M., Kota R. S., Lewis D. A. (2011). GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders. Int. J. Neuropsychopharmacol. 14 721–734. 10.1017/S1461145710001616
    1. Slattery D. A., Desrayaud S., Cryan J. F. (2005). GABAB receptor antagonist-mediated antidepressant-like behavior is serotonin-dependent. J. Pharmacol. Exp. Ther. 312 290–296. 10.1124/jpet.104.073536
    1. Smith K. S., Rudolph U. (2012). Anxiety and depression: mouse genetics and pharmacological approaches to the role of GABA(A) receptor subtypes. Neuropharmacology 62 54–62. 10.1016/j.neuropharm.2011.07.026
    1. Song Z., Huang P., Qiu L., Wu Q., Gong Q., Zhang B., et al. (2012). [Decreased occipital GABA concentrations in patients with first-episode major depressive disorder: a magnetic resonance spectroscopy study]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 29 233–236.
    1. Soumier A., Sibille E. (2014). Opposing effects of acute versus chronic blockade of frontal cortex somatostatin-positive inhibitory neurons on behavioral emotionality in mice. Neuropsychopharmacology 39 2252–2262. 10.1038/npp.2014.76
    1. Stampanoni Bassi M., Gilio L., Maffei P., Dolcetti E., Bruno A., Buttari F., et al. (2018). Exploiting the multifaceted effects of cannabinoids on mood to boost their therapeutic use against anxiety and depression. Front. Mol. Neurosci. 11:424. 10.3389/fnmol.2018.00424
    1. Stone J. M., Dietrich C., Edden R., Mehta M. A., De Simoni S., Reed L. J., et al. (2012). Ketamine effects on brain GABA and glutamate levels with 1H-MRS: relationship to ketamine-induced psychopathology. Mol. Psychiatry 17 664–665. 10.1038/mp.2011.171
    1. Strohle A., Romeo E., Hermann B., Pasini A., Spalletta G., di Michele F., et al. (1999). Concentrations of 3 alpha-reduced neuroactive steroids and their precursors in plasma of patients with major depression and after clinical recovery. Biol. Psychiatry 45 274–277. 10.1016/S0006-3223(98)00328-X
    1. Szabo B., Schlicker E. (2005). Effects of cannabinoids on neurotransmission. Handb. Exp. Pharmacol. 168 327–365. 10.1007/3-540-26573-2_11
    1. Taylor M. J., Tiangga E. R., Mhuircheartaigh R. N., Cowen P. J. (2012). Lack of effect of ketamine on cortical glutamate and glutamine in healthy volunteers: a proton magnetic resonance spectroscopy study. J. Psychopharmacol. 26 733–737. 10.1177/0269881111405359
    1. Thase M. E., Mahableshwarkar A. R., Dragheim M., Loft H., Vieta E. (2016). A meta-analysis of randomized, placebo-controlled trials of vortioxetine for the treatment of major depressive disorder in adults. Eur. Neuropsychopharmacol. 26 979–993. 10.1016/j.euroneuro.2016.03.007
    1. Thorsell A., Michalkiewicz M., Dumont Y., Quirion R., Caberlotto L., Rimondini R., et al. (2000). Behavioral insensitivity to restraint stress, absent fear suppression of behavior and impaired spatial learning in transgenic rats with hippocampal neuropeptide Y overexpression. Proc. Natl. Acad. Sci. U.S.A. 97 12852–12857. 10.1073/pnas.220232997
    1. Todorovic N., Micic B., Schwirtlich M., Stevanovic M., Filipovic D. (2019). Subregion-specific protective effects of fluoxetine and clozapine on parvalbumin expression in medial prefrontal cortex of chronically isolated rats. Neuroscience 396 24–35. 10.1016/j.neuroscience.2018.11.008
    1. Tremblay R., Lee S., Rudy B. (2016). GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91 260–292. 10.1016/j.neuron.2016.06.033
    1. Tripp A., Kota R. S., Lewis D. A., Sibille E. (2011). Reduced somatostatin in subgenual anterior cingulate cortex in major depression. Neurobiol. Dis. 42 116–124. 10.1016/j.nbd.2011.01.014
    1. Tripp A., Oh H., Guilloux J. P., Martinowich K., Lewis D. A., Sibille E. (2012). Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder. Am. J. Psychiatry 169 1194–1202. 10.1176/appi.ajp.2012.12020248
    1. Trivedi M. H., Rush A. J., Wisniewski S. R., Nierenberg A. A., Warden D., Ritz L., et al. (2006). Evaluation of outcomes with citalopram for depression using measurement-based care in STAR∗D: implications for clinical practice. Am. J. Psychiatry 163 28–40. 10.1176/appi.ajp.163.1.28
    1. Urban-Ciecko J., Barth A. L. (2016). Somatostatin-expressing neurons in cortical networks. Nat. Rev. Neurosci. 17 401–409. 10.1038/nrn.2016.53
    1. Uzunov D. P., Cooper T. B., Costa E., Guidotti A. (1996). Fluoxetine-elicited changes in brain neurosteroid content measured by negative ion mass fragmentography. Proc. Natl. Acad. Sci. U.S.A. 93 12599–12604. 10.1073/pnas.93.22.12599
    1. Uzunova V., Sheline Y., Davis J. M., Rasmusson A., Uzunov D. P., Costa E., et al. (1998). Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc. Natl. Acad. Sci. U.S.A. 95 3239–3244. 10.1073/pnas.95.6.3239
    1. Uzunova V., Wrynn A. S., Kinnunen A., Ceci M., Kohler C., Uzunov D. P. (2004). Chronic antidepressants reverse cerebrocortical allopregnanolone decline in the olfactory-bulbectomized rat. Eur. J. Pharmacol. 486 31–34. 10.1016/j.ejphar.2003.12.002
    1. Valentine G. W., Mason G. F., Gomez R., Fasula M., Watzl J., Pittman B., et al. (2011). The antidepressant effect of ketamine is not associated with changes in occipital amino acid neurotransmitter content as measured by [(1)H]-MRS. Psychiatry Res. 191 122–127. 10.1016/j.pscychresns.2010.10.009
    1. van Marwijk H., Allick G., Wegman F., Bax A., Riphagen I. I. (2012). Alprazolam for depression. Cochrane Database Syst. Rev. 7:CD007139. 10.1002/14651858.CD007139.pub2
    1. Varga Z., Csabai D., Miseta A., Wiborg O., Czeh B. (2017). Chronic stress affects the number of GABAergic neurons in the orbitofrontal cortex of rats. Behav. Brain Res. 316 104–114. 10.1016/j.bbr.2016.08.030
    1. Viollet C., Vaillend C., Videau C., Bluet-Pajot M. T., Ungerer A., L’Heritier A., et al. (2000). Involvement of sst2 somatostatin receptor in locomotor, exploratory activity and emotional reactivity in mice. Eur. J. Neurosci. 12 3761–3770. 10.1046/j.1460-9568.2000.00249.x
    1. Vithlani M., Hines R. M., Zhong P., Terunuma M., Hines D. J., Revilla-Sanchez R., et al. (2013). The ability of BDNF to modify neurogenesis and depressive-like behaviors is dependent upon phosphorylation of tyrosine residues 365/367 in the GABA(A)-receptor gamma2 subunit. J. Neurosci. 33 15567–15577. 10.1523/JNEUROSCI.1845-13.2013
    1. Vollenweider I., Smith K. S., Keist R., Rudolph U. (2011). Antidepressant-like properties of alpha2-containing GABA(A) receptors. Behav. Brain Res. 217 77–80. 10.1016/j.bbr.2010.10.009
    1. Wang D. S., Penna A., Orser B. A. (2017). Ketamine increases the function of gamma-aminobutyric acid type A receptors in hippocampal and cortical neurons. Anesthesiology 126 666–677. 10.1097/ALN.0000000000001483
    1. Wang X., Dow-Edwards D., Keller E., Hurd Y. L. (2003). Preferential limbic expression of the cannabinoid receptor mRNA in the human fetal brain. Neuroscience 118 681–694. 10.1016/S0306-4522(03)00020-4
    1. Wedzony K., Chocyk A. (2009). Cannabinoid CB1 receptors in rat medial prefrontal cortex are colocalized with calbindin- but not parvalbumin- and calretinin-positive GABA-ergic neurons. Pharmacol. Rep. 61 1000–1007. 10.1016/S1734-1140(09)70161-6
    1. Westrin A., Ekman R., Traskman-Bendz L. (1999). Alterations of corticotropin releasing hormone (CRH) and neuropeptide Y (NPY) plasma levels in mood disorder patients with a recent suicide attempt. Eur. Neuropsychopharmacol. 9 205–211. 10.1016/S0924-977X(98)00026-1
    1. Widdowson P. S., Ordway G. A., Halaris A. E. (1992). Reduced neuropeptide Y concentrations in suicide brain. J. Neurochem. 59 73–80. 10.1111/j.1471-4159.1992.tb08877.x
    1. Widerlov E., Lindstrom L. H., Wahlestedt C., Ekman R. (1988). Neuropeptide Y and peptide YY as possible cerebrospinal fluid markers for major depression and schizophrenia, respectively. J. Psychiatr. Res. 22 69–79. 10.1016/0022-3956(88)90030-1
    1. Wilkinson S. T., Sanacora G. (2018). A new generation of antidepressants: an update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. Drug Discov. Today 10.1016/j.drudis.2018.11.007 [Epub ahead of print].
    1. Workman E. R., Haddick P. C., Bush K., Dilly G. A., Niere F., Zemelman B. V., et al. (2015). Rapid antidepressants stimulate the decoupling of GABA(B) receptors from GIRK/Kir3 channels through increased protein stability of 14-3-3eta. Mol. Psychiatry 20 298–310. 10.1038/mp.2014.165
    1. Workman E. R., Niere F., Raab-Graham K. F. (2013). mTORC1-dependent protein synthesis underlying rapid antidepressant effect requires GABABR signaling. Neuropharmacology 73 192–203. 10.1016/j.neuropharm.2013.05.037
    1. Xiong Z., Zhang K., Ishima T., Ren Q., Chang L., Chen J., et al. (2018). Comparison of rapid and long-lasting antidepressant effects of negative modulators of alpha5-containing GABAA receptors and (R)ketamine in a chronic social defeat stress model. Pharmacol. Biochem. Behav. 175 139–145. 10.1016/j.pbb.2018.10.005
    1. Yang Y., Babygirija R., Zheng J., Shi B., Sun W., Zheng X., et al. (2018). Central neuropeptide Y plays an important role in mediating the adaptation mechanism against chronic stress in male rats. Endocrinology 159 1525–1536. 10.1210/en.2018-00045
    1. Yeung M., Engin E., Treit D. (2011). Anxiolytic-like effects of somatostatin isoforms SST 14 and SST 28 in two animal models (Rattus norvegicus) after intra-amygdalar and intra-septal microinfusions. Psychopharmacology 216 557–567. 10.1007/s00213-011-2248-x
    1. Zadrozna M., Nowak B., Lason-Tyburkiewicz M., Wolak M., Sowa-Kucma M., Papp M., et al. (2011). Different pattern of changes in calcium binding proteins immunoreactivity in the medial prefrontal cortex of rats exposed to stress models of depression. Pharmacol. Rep. 63 1539–1546. 10.1016/S1734-1140(11)70718-6
    1. Zanos P., Moaddel R., Morris P. J., Georgiou P., Fischell J., Elmer G. I., et al. (2016). NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533 481–486. 10.1038/nature17998
    1. Zanos P., Nelson M. E., Highland J. N., Krimmel S. R., Georgiou P., Gould T. D., et al. (2017). A negative allosteric modulator for alpha5 subunit-containing GABA receptors exerts a rapid and persistent antidepressant-like action without the side effects of the NMDA receptor antagonist ketamine in mice. eNeuro 4:ENEURO.285-ENEURO.216. 10.1523/ENEURO.0285-16.2017
    1. Zarate C. A., Jr., Singh J. B., Carlson P. J., Brutsche N. E., Ameli R., Luckenbaugh D. A., et al. (2006). A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry 63 856–864. 10.1001/archpsyc.63.8.856
    1. Zhou W., Wang N., Yang C., Li X. M., Zhou Z. Q., Yang J. J. (2014). Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur. Psychiatry 29 419–423. 10.1016/j.eurpsy.2013.10.005
    1. Zou D., Chen L., Deng D., Jiang D., Dong F., McSweeney C., et al. (2016). DREADD in parvalbumin interneurons of the dentate gyrus modulates anxiety, social interaction and memory extinction. Curr. Mol. Med. 16 91–102. 10.2174/1566524016666151222150024

Source: PubMed

3
订阅