Evaluation of the selenotranscriptome expression in two hepatocellular carcinoma cell lines

Stefano Guariniello, Giovanni Di Bernardo, Giovanni Colonna, Marcella Cammarota, Giuseppe Castello, Susan Costantini, Stefano Guariniello, Giovanni Di Bernardo, Giovanni Colonna, Marcella Cammarota, Giuseppe Castello, Susan Costantini

Abstract

Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is still one of the most fatal cancers. Hence, it needs to identify always new putative markers to improve its diagnosis and prognosis. Since the selenium is able to fight the oxidative damage which is one of the major origins of cell damage as well as cancer, we have recently focused our attention on selenoprotein family and their involvement in HCC. In the present paper we have carried out a global analysis of the selenotranscriptome expression in HepG2 and Huh7 cells compared to the normal human hepatocytes by reverse transcription-qPCR (RT-qPCR). Our data showed that in both cells there are three downregulated (DIO1, DIO2, and SELO) and ten upregulated (GPX4, GPX7, SELK, SELM, SELN, SELT, SELV, SEP15, SEPW1, and TrxR1) genes. Additionally, interactomic studies were carried out to evaluate the ability of these down- and upregulated genes to interact between them as well as to identify putative HUB nodes representing the centers of correlation able to exercise a direct control over the coordinated genes.

Figures

Figure 1
Figure 1
Expression of selenoprotein genes analyzed by means of RT-qPCR. The average value for the expression of these genes was obtained from three independent experiments. (a) shows the downregulated genes in HepG2 and Huh7 versus normal hepatocytes (DIO1, DIO2, and SELO) while (b) shows the ten upregulated genes (GPX4, GPX7, SELK, SELM, SELN, SELT, SELV, SEP15, SEPW1, and TrxR1). In each reaction, the expression levels were normalized to the average of the control gene (18S rRNA) and expressed as arbitrary units. The mRNA levels in hepatocytes, HepG2, and Huh7 were evaluated by using the ΔΔCt method. Significant differences in relative gene expression between hepatocytes and HepG2 or Huh7 are marked by (p value < 0.05) and (∗∗p value < 0.01).
Figure 2
Figure 2
Network analysis: down- and upregulated genes are evidenced by yellow symbols, HUB nodes by cyan symbols, whereas all other genes by white symbols.

References

    1. El-Serag H. B., Rudolph K. L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–2576. doi: 10.1053/j.gastro.2007.04.061.
    1. Jemal A., Siegel R., Ward E., Murray T., Xu J., Thun M. J. Cancer statistics, 2007. CA: A Cancer Journal for Clinicians. 2007;57(1):43–66. doi: 10.3322/canjclin.57.1.43.
    1. Castello G., Scala S., Palmieri G., Curley S. A., Izzo F. HCV-related hepatocellular carcinoma: from chronic inflammation to cancer. Clinical Immunology. 2010;134(3):237–250. doi: 10.1016/j.clim.2009.10.007.
    1. Costantini S., Capone F., Guerriero E., et al. Cytokinome profile of patients with type 2 diabetes and/or chronic hepatitis C infection. PLoS ONE. 2012;7(6) doi: 10.1371/journal.pone.0039486.e39486
    1. Bruix J., Llovet J. M. Prognostic prediction and treatment strategy in hepatocellular carcinoma. Hepatology. 2002;35(3):519–524. doi: 10.1053/jhep.2002.32089.
    1. Bruix J., Sherman M. Management of hepatocellular carcinoma. Hepatology. 2005;42(5):1208–1236. doi: 10.1002/hep.20933.
    1. Costantini S., Di Bernardo G., Cammarota M., Castello G., Colonna G. Gene expression signature of human HepG2 cell line. Gene. 2013;518(2):335–345. doi: 10.1016/j.gene.2012.12.106.
    1. Valko M., Rhodes C. J., Moncol J., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions. 2006;160(1):1–40. doi: 10.1016/j.cbi.2005.12.009.
    1. Kryukov G. V., Castellano S., Novoselov S. V., et al. Characterization of mammalian selenoproteomes. Science. 2003;300(5624):1439–1443. doi: 10.1126/science.1083516.
    1. Bellinger F. P., Raman A. V., Reeves M. A., Berry M. J. Regulation and function of selenoproteins in human disease. Biochemical Journal. 2009;422(1):11–22.
    1. Raucci R., Colonna G., Guerriero E., et al. Structural and functional studies of the human selenium binding protein-1 and its involvement in hepatocellular carcinoma. Biochimica et Biophysica Acta. 2011;1814(4):513–522. doi: 10.1016/j.bbapap.2011.02.006.
    1. Di Stasio M., Volpe M. G., Colonna G., et al. A possible predictive marker of progression for hepatocellular carcinoma. Oncology Letters. 2011;2(6):1247–1251. doi: 10.3892/ol.2011.378.
    1. Guerriero E., Accardo M., Capone F., Colonna G., Castello G., Costantini S. Assessment of the Selenoprotein M (SELM) over-expression on human hepatocellular carcinoma tissues by immunohistochemistry. European Journal of Histochemistry. 2014;58(4) doi: 10.4081/ejh.2014.2433.
    1. di Bernardo G., Alessio N., Dell'Aversana C., et al. Impact of histone deacetylase inhibitors SAHA and MS-275 on DNA repair pathways in human mesenchymal stem cells. Journal of Cellular Physiology. 2010;225(2):537–544. doi: 10.1002/jcp.22236.
    1. Hsieh J.-L., Wu C.-L., Lee C.-H., Shiau A.-L. Hepatitis B virus X protein sensitizes hepatocellular carcinoma cells to cytolysis induced by E1B-deleted adenovirus through the disruption of p53 function. Clinical Cancer Research. 2003;9(1):338–345.
    1. Hussain S. P., Schwank J., Staib F., Wang X. W., Harris C. C. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene. 2007;26(15):2166–2176. doi: 10.1038/sj.onc.1210279.
    1. Brito A. F., Abrantes A. M., Pinto-Costa C., et al. Hepatocellular carcinoma and chemotherapy: the role of p53. Chemotherapy. 2013;58(5):381–386. doi: 10.1159/000343656.
    1. Hawkes W. C., Alkan Z. Regulation of redox signaling by selenoproteins. Biological Trace Element Research. 2010;134(3):235–251. doi: 10.1007/s12011-010-8656-7.
    1. Copeland P. R., Fletcher J. E., Carlson B. A., Hatfield D. L., Driscoll D. M. A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. The EMBO Journal. 2000;19(2):306–314.
    1. Du W., Rani R., Sipple J., et al. The FA pathway counteracts oxidative stress through selective protection of antioxidant defense gene promoters. Blood. 2012;119(18):4142–4151. doi: 10.1182/blood-2011-09-381970.
    1. Bloomfield K. L., Osborne S. A., Kennedy D. D., Clarke F. M., Tonissen K. F. Thioredoxin-mediated redox control of the transcription factor Sp1 and regulation of the thioredoxin gene promoter. Gene. 2003;319(1-2):107–116. doi: 10.1016/S0378-1119(03)00799-6.
    1. Guichard C., Amaddeo G., Imbeaud S., et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nature Genetics. 2012;44(6):694–698. doi: 10.1038/ng.2256.
    1. Tomimaru Y., Eguchi H., Wada H., et al. Insulin-like growth factor-binding protein 7 alters the sensitivity to interferon-based anticancer therapy in hepatocellular carcinoma cells. British Journal of Cancer. 2010;102(10):1483–1490. doi: 10.1038/sj.bjc.6605669.
    1. Medina P. P., Romero O. A., Kohno T., et al. Frequent BRG1/SMARCA4–inactivating mutations in human lung cancer cell lines. Human Mutation. 2008;29(5):617–622. doi: 10.1002/humu.20730.
    1. Hirano F., Tanaka H., Hirano Y., et al. Functional interference of SP1 and NF-κB through the same DNA binding site. Molecular and Cellular Biology. 1998;18(3):1266–1274.
    1. Chuang J.-Y., Wu C.-H., Lai M.-D., Chang W.-C., Hung J.-J. Overexpression of Sp1 leads to p53-dependent apoptosis in cancer cells. International Journal of Cancer. 2009;125(9):2066–2076. doi: 10.1002/ijc.24563.
    1. Sande S., Privalsky M. L. Identification of TRACs (T3 receptor-associating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors. Molecular Endocrinology. 1996;10(7):813–825. doi: 10.1210/me.10.7.813.
    1. Choi H.-K., Choi K.-C., Kang H.-B., et al. Function of multiple lis-homology domain/WD-40 repeat-containing proteins in feed-forward transcriptional repression by silencing mediator for retinoic and thyroid receptor/nuclear receptor corepressor complexes. Molecular Endocrinology. 2008;22(5):1093–1104. doi: 10.1210/me.2007-0396.
    1. Curcio-Morelli C., Zavacki A. M., Christofollete M., et al. Deubiquitination of type 2 iodothyronine deiodinase by von Hippel-Lindau protein-interacting deubiquitinating enzymes regulates thyroid hormone activation. The Journal of Clinical Investigation. 2003;112(2):189–196. doi: 10.1172/jci200318348.
    1. Arnaldi L. A. T., Borra R. C., Maciel R. M. B., Cerutti J. M. Gene expression profiles reveal that DCN, DIO1, and DIO2 are underexpressed in benign and malignant thyroid tumors. Thyroid. 2005;15(3):210–221. doi: 10.1089/thy.2005.15.210.
    1. Sabatino L., Iervasi G., Ferrazzi P., Francesconi D., Chopra I. J. A study of iodothyronine 5′-monodeiodinase activities in normal and pathological tissues in man and their comparison with activities in rat tissues. Life Sciences. 2000;68(2):191–202. doi: 10.1016/s0024-3205(00)00929-2.
    1. Chi H. C., Chen C.-Y., Tsai M.-M., Tsai C.-Y., Lin K.-H. Molecular functions of thyroid hormones and their clinical significance in liver-related diseases. BioMed Research International. 2013;2013:16. doi: 10.1155/2013/601361.601361

Source: PubMed

3
订阅