Robust prediction of mortality of COVID-19 patients based on quantitative, operator-independent, lung CT densitometry

Martina Mori, Diego Palumbo, Rebecca De Lorenzo, Sara Broggi, Nicola Compagnone, Giorgia Guazzarotti, Pier Giorgio Esposito, Aldo Mazzilli, Stephanie Steidler, Giordano Pietro Vitali, Antonella Del Vecchio, Patrizia Rovere Querini, Francesco De Cobelli, Claudio Fiorino, Martina Mori, Diego Palumbo, Rebecca De Lorenzo, Sara Broggi, Nicola Compagnone, Giorgia Guazzarotti, Pier Giorgio Esposito, Aldo Mazzilli, Stephanie Steidler, Giordano Pietro Vitali, Antonella Del Vecchio, Patrizia Rovere Querini, Francesco De Cobelli, Claudio Fiorino

Abstract

Purpose: To train and validate a predictive model of mortality for hospitalized COVID-19 patients based on lung densitometry.

Methods: Two-hundred-fifty-one patients with respiratory symptoms underwent CT few days after hospitalization. "Aerated" (AV), "consolidated" (CV) and "intermediate" (IV) lung sub-volumes were quantified by an operator-independent method based on individual HU maximum gradient recognition. AV, CV, IV, CV/AV, IV/AV, and HU of the first peak position were extracted. Relevant clinical parameters were prospectively collected. The population was composed by training (n = 166) and validation (n = 85) consecutive cohorts, and backward multi-variate logistic regression was applied on the training group to build a CT_model. Similarly, models including only clinical parameters (CLIN_model) and both CT/clinical parameters (COMB_model) were developed. Model's performances were assessed by goodness-of-fit (H&L-test), calibration and discrimination. Model's performances were tested in the validation group.

Results: Forty-three patients died (25/18 in training/validation). CT_model included AVmax (i.e. maximum AV between lungs), CV and CV/AE, while CLIN_model included random glycemia, C-reactive protein and biological drugs (protective). Goodness-of-fit and discrimination were similar (H&L:0.70 vs 0.80; AUC:0.80 vs 0.80). COMB_model including AVmax, CV, CV/AE, random glycemia, biological drugs and active cancer, outperformed both models (H&L:0.91; AUC:0.89, 95%CI:0.82-0.93). All models showed good calibration (R2:0.77-0.97). Despite several patient's characteristics were different between training and validation cohorts, performances in the validation cohort confirmed good calibration (R2:0-70-0.81) and discrimination for CT_model/COMB_model (AUC:0.72/0.76), while CLIN_model performed worse (AUC:0.64).

Conclusions: Few automatically extracted densitometry parameters with clear functional meaning predicted mortality of COVID-19 patients. Combined with clinical features, the resulting predictive model showed higher discrimination/calibration.

Keywords: COVID-19; CT; Lung densitometry; Respiratory distress syndrome.

Copyright © 2021 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

Figures

Fig. 1
Fig. 1
Graphical representation of the threshold values found by searching inflexion points of the HU-density histograms. The Aerated Volume (AV) in white ranges between −1000 HU and HU Threshold 1; the Intermediate Volume (IV) in light grey ranges between HU Threshold 1 and HU Threshold 2; the Consolidated Volumes (CV) in dark grey ranges from HU Threshold 2 until higher HU values.
Fig. 2
Fig. 2
ROC curves of the predictive indexes of the three models and their comparison in the training and validation group.
Fig. 2
Fig. 2
ROC curves of the predictive indexes of the three models and their comparison in the training and validation group.
Fig. 3
Fig. 3
Calibration plots of the predictive indexes in the training and validation group.

References

    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y.i. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513. doi: 10.1016/S0140-6736(20)30211-7.
    1. Agricola E., Beneduce A., Esposito A., Ingallina G., Palumbo D., Palmisano A. Heart and Lung Multimodality Imaging in COVID-19. JACC Cardiovasc Imaging. 2020;13:1792–1808. doi: 10.1016/j.jcmg.2020.05.017.
    1. Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X et al., CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 2020;295:202–207, DOI:10.1148/radiol.2020200230.
    1. Ding X, Xu J, Zhou J, Long Q. Chest CT findings of COVID-19 pneumonia by duration of symptoms, Eur. J. Radiol. 2020;127:109009. DOI:10.1016/j.ejrad.2020.109009.
    1. Pan F., Ye T., Sun P., Gui S., Liang B., Lingli L. novel coronavirus (COVID-19) pneumonia. Radiology. 2019;2020 doi: 10.1148/radiol.2020200370.
    1. Shi H., Han X., Jiang N., Cao Y., Alwalid O., Gu J. Radiological findings from 81 patients with COVID- 19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020;20(4):425–434. doi: 10.1016/S1473-3099(20)30086-4.
    1. Ojha V., Mani A., Pandey N.N., Sharma S., Kumar S. CT in coronavirus disease 2019 (COVID-19): a systematic review of chest CT findings in 4410 adult patients. Eur Radiol. 2020;30(11):6129–6138.
    1. Ye Z., Zhang Y., Wang Y.i., Huang Z., Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur Radiol. 2020;30(8):4381–4389. doi: 10.1007/s00330-020-06801-0.
    1. Zhou Z., Guo D., Li C., Fang Z., Chen L., Yang R. initial chest CT findings. Eur Radiol. 2020;30(8):4398–4406. doi: 10.1007/s00330-020-06816-7.
    1. Hani C., Trieu N.H., Saab I., Dangeard S., Bennani S., Chassagnon G. COVID-19 pneumonia: a review of typical CT findings and differential diagnosis. Diagn Interv Imaging. 2020;101(5):263–268. doi: 10.1016/j.diii.2020.03.014.
    1. Zhao W., Zhong Z., Xie X., Yu Q., Liu J. Relation between chest CT findings and clinical conditions of coronavirus disease (covid-19) pneumonia: a multicenter study. AJR Am J Roentgenol. 2020;214(5):1072–1077. doi: 10.2214/AJR.20.22976.
    1. Ai T., Yang Z., Hou H., Zhan C., Chen C., Lv W. (COVID-19) in China: a report of 1014 cases. Radiology. 2019;2020 doi: 10.1148/radiol.2020200642.
    1. Kim H, Hong H, Yoon SH, Diagnostic performance of CT and reverse transcriptase-polymerase chain reaction for coronavirus disease 2019: a meta- analysis, Radiology 2020: 201343, DOI:10.1148/radiol.2020201343.
    1. Hamer Okka Wilkea, Salzberger Bernd, Gebauer Johannes, Stroszczynski Christian, Pfeifer Michael. CT morphology of COVID-19: Case report and review of literature. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgeb Verfahren. 2020;192(05):386–392. doi: 10.1055/a-1142-4094.
    1. Li Kunhua, Wu Jiong, Wu Faqi, Guo Dajing, Chen Linli, Fang Zheng. The Clinical and Chest CT Features Associated With Severe and Critical COVID-19 Pneumonia. Invest Radiol. 2020;55(6):327–331. doi: 10.1097/RLI.0000000000000672.
    1. Hansell David M., Bankier Alexander A., MacMahon Heber, McLoud Theresa C., Müller Nestor L., Remy Jacques. Fleischner Society: glossary of terms for thoracic imaging. Radiology. 2008;246(3):697–722. doi: 10.1148/radiol.2462070712.
    1. Liu F., Zhang Q., Huang C., Shi C., Wang L., Shi N. CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients. Theranostics. 2020;10(12):5613–5622. doi: 10.7150/thno.459.
    1. Meiler Stefanie, Schaible Jan, Poschenrieder Florian, Scharf Gregor, Zeman Florian, Rennert Janine. 109256. Can CT performed in the early disease phase predict outcome of patients with COVID 19 pneumonia? Analysis of a cohort of 64 patientsfrom Germany. Eur J Radiol. 2020;131:109256. doi: 10.1016/j.ejrad.2020.109256.
    1. Colombi Davide, Bodini Flavio C., Petrini Marcello, Maffi Gabriele, Morelli Nicola, Milanese Gianluca. Well-aerated lung on admitting chest CT to predict adverse outcome in COVID-19 pneumonia. Radiology. 2020;296(2):E86–E96. doi: 10.1148/radiol.2020201433.
    1. Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ,2020:369:m1328. doi: 10.1136/bmj.m1328.
    1. Leonardi Andrea, Scipione Roberto, Alfieri Giulia, Petrillo Roberta, Dolciami Miriam, Ciccarelli Fabio. Role of computed tomography in predicting critical disease in patients with covid-19 pneumonia: a retrospective study using a semiautomatic quantitative method. Eur J Radiol. 2020;130:109202. doi: 10.1016/j.ejrad.2020.109202.
    1. Matos J., Paparo Francesco, Mussetto Ilaria, Bacigalupo Lorenzo, Veneziano Alessio, Perugin Bernardi Silvia. Evaluation of novel coronavirus disease (COVID-19) using quantitative lung CT and clinical data: prediction of short-term outcome. Eur Radiol Exp. 2020;4(1) doi: 10.1186/s41747-020-00167-0.
    1. Zangrillo A., Beretta L., Scandroglio Monti G, Fominskiy E., Colombo S., Morselli F. Characteristics, treatment, outcomes and cause of death of invasively ventilated patients with COVID-19 ARDS in Milan, Italy. Crit Care Resusc. 2020;3:200–211.
    1. Ciceri F, Castagna A, Rovere-Querini P, Decobelli F, Ruggeri A, Galli A et al. Early predictors of clinical outcomes of COVID-19 outbreak in Milan, Italy, Clinical Immunology 2020:217,17:108509. doi:10.1016/j.clim.2020.108509.Epub 2020 Jun 12.
    1. Mazzilli Aldo, Fiorino Claudio, Loria Alessandro, Mori Martina, Esposito Pier Giorgio, Palumbo Diego. An automatic approach for individual HU-based characterization of lungs in COVID-19 patients. Appl Sciences. 2021;11(3):1238. doi: 10.3390/app11031238.
    1. Loeh Benjamin, Brylski Lukas T., von der Beck Daniel, Seeger Werner, Krauss Ekaterina, Bonniaud Philippe. Lung CT densitometry in idiopathic pulmonary fibrosis for the prediction of natural course, severity and mortality. Chest. 2019;155(5):972–981.
    1. DeLong E.R., DeLong D.M., Clarke-Pearson D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–845. doi: 10.2307/2531595.
    1. Li Lin, Qin Lixin, Xu Zeguo, Yin Youbing, Wang Xin, Kong Bin. Using Artificial Intelligence to Detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy. Radiology. 2020;296(2):E65–E71. doi: 10.1148/radiol.2020200905.
    1. Chaganti Shikha, Grenier Philippe, Balachandran Abishek, Chabin Guillaume, Cohen Stuart, Flohr Thomas. Automated Quantification of CT Patterns Associated with COVID-19 from Chest CT. Radiol Artif Intell. 2020;2(4):e200048. doi: 10.1148/ryai.2020200048.
    1. Collins G S, Reitsma J B, Altman D G, Moons K G M. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. Br J Cancer. 2015;112(2):251–259.
    1. Jajodia A, Ebner L, Heidinger B, Chaturvedi A, Prosch H. Imaging in corona virus disease 2019 (COVID-19)—A Scoping review. Eur Jour Radiol Open, 2020 7, art. no. 100237. DOI:10.1016/j.ejro.2020.100237.
    1. Yip S, Klanecek Z, Naganawa S, Kim J, Studen A, Rivetti L et al. Performance and Robustness of Machine Learning-based Radiomic COVID-19 Severity Prediction. Medrxiv, 2020: DOI:10.1101/2020.09.07.20189977. (white paper on web).
    1. Mushtaq J, Pennella R, Lavalle S, Colarieti A, Steidler S, Martinenghi CMA et al. Initial chest radiographs and artificial intelligence (AI) predict clinical outcomes in COVID-19 patients: analysis of 697 Italian patients. Eur Radiol 2020. In press.
    1. Li Zhang, Zhong Zheng, Li Yang, Zhang Tianyu, Gao Liangxin, Jin Dakai. From community-acquired pneumonia to COVID-19: a deep learning-based method for quantitative analysis of COVID-19 on thick-section CT scans. Eur Radiol. 2020;30(12):6828–6837.

Source: PubMed

3
订阅