Smallpox, Monkeypox and Other Human Orthopoxvirus Infections

Galina A Shchelkunova, Sergei N Shchelkunov, Galina A Shchelkunova, Sergei N Shchelkunov

Abstract

Considering that vaccination against smallpox with live vaccinia virus led to serious adverse effects in some cases, the WHO, after declaration of the global eradication of smallpox in 1980, strongly recommended to discontinue the vaccination in all countries. This led to the loss of immunity against not only smallpox but also other zoonotic orthopoxvirus infections in humans over the past years. An increasing number of human infections with zoonotic orthopoxviruses and, first of all, monkeypox, force us to reconsider a possible re-emergence of smallpox or a similar disease as a result of natural evolution of these viruses. The review contains a brief analysis of the results of studies on genomic organization and evolution of human pathogenic orthopoxviruses, development of modern methods for diagnosis, vaccination, and chemotherapy of smallpox, monkeypox, and other zoonotic human orthopoxvirus infections.

Keywords: chemotherapy; diagnostics; evolution; monkeypox virus; orthopoxviruses; vaccine; variola virus.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Fenner F., Henderson D.A., Arita I., Jezek Z., Ladnyi I.D. Smallpox and Its Eradication. World Health Organization; Geneva, Switzerlands: 1988. 1460p
    1. Shchelkunov S.N., Marennikova S.S., Moyer R.W. Orthopoxviruses Pathogenic for Humans. Springer; New York, NY, USA: 2005. 425p
    1. Report of the Fourth Meeting of the Committee on Orthopoxvirus Infections, Geneva, 24–26 March 1986. World Health Organization; Geneva, Switzerland: 1986. SE/86.163.
    1. Report of the Ad Hoc Committee on Orthopoxvirus Infections, Geneva, 11–13 December 1990. World Health Organization; Geneva, Switzerland: 1990. CDS/SME/91.1.
    1. Shchelkunov S.N., Marennikova S.S., Totmenin A.V., Blinov V.M., Chizhikov V.E., Gutorov V.V., Safronov P.F., Pozdnyakov S.G., Shelukhina E.M., Gashnikov P.V., et al. Construction of libraries of fragments of smallpox virus DNA and structure–function analysis of viral host range genes. Dokl. Akad. Nauk USSR. 1991;321:402–406.
    1. Shchelkunov S.N., Blinov V.M., Totmenin A.V., Marennikova S.S., Kolykhalov A.A., Frolov I.V., Chizhikov V.E., Gutorov V.V., Gashnikov P.V., Belanov E.F., et al. Study of the structure–function organization of variola virus genome. I. Cloning of HindIII and XhoI fragments of the viral DNA and sequencing of HindIII-M, -L, and -I fragments. Mol. Biol. 1992;26:1099–1115.
    1. Shchelkunov S.N., Resenchuk S.M., Totmenin A.V., Blinov V.M., Marennikova S.S., Sandakhchiev L.S. Comparison of the genetic maps of variola and vaccinia viruses. FEBS Lett. 1993;327:321–324. doi: 10.1016/0014-5793(93)81013-P.
    1. Shchelkunov S.N., Marennikova S.S., Blinov V.M., Totmenin A.V., Chizhikov V.E., Netesov S.V., Andzhaparidze O.G., Sandakhchiev L.S. The nucleotide sequence of genome of variola major virus strain India-1967; Proceedings of the 9th International Conference on Poxviruses and Iridoviruses; Les Diablerets, Switzerland. 1–6 September 1992.
    1. Massung R.F., Liu L.-I., Qi J., Knight J.C., Yuran T.E., Kerlavage A.R., Parsons J.M., Venter J.C., Esposito J.J. Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. Virology. 1994;201:215–240. doi: 10.1006/viro.1994.1288.
    1. Shchelkunov S.N., Massung R.F., Esposito J.J. Comparison of the genome DNA sequences of Bangladesh-1975 and India-1967 variola viruses. Virus Res. 1995;36:107–118. doi: 10.1016/0168-1702(94)00113-Q.
    1. Mahy B.W., Almond J.W., Berns K.I., Chanock R.M., Lvov D.K., Pettersson A.F., Schatzmayrand H.G., Fenner F. The remaining stocks of smallpox virus should be destroyed. Science. 1993;262:1223–1224. doi: 10.1126/science.8235651.
    1. Joklik W.K., Moss B., Fields B.N., Bishop D.H., Sandakhchiev L.S. Why the smallpox virus stocks should not be destroyed. Science. 1993;262:1225–1226. doi: 10.1126/science.8235652.
    1. Report of the Meeting of the Ad Hoc Committee on Orthopoxvirus Infections, Geneva, 9 September 1994. World Health Organization; Geneva, Switzerland: 1994. WHO/CDS/BVI/94.3.
    1. Shchelkunov S.N., Totmenin A.V., Loparev V.N., Safronov P.F., Gutorov V.V., Chizhikov V.E., Knight J.C., Parsons J.M., Massung R.F., Esposito J.J. Alastrim smallpox variola minor virus genome DNA sequences. Virology. 2000;266:361–386. doi: 10.1006/viro.1999.0086.
    1. World Health Assembly . Smallpox Eradication: Destruction of Variola Virus Stocks. Geneva, 25 May 1996. World Health Organization; Geneva, Switzerland: 1996. WHA49.10.
    1. WHO Advisory Committee on Variola Virus Research. Report of the Sixteenth Meeting, Geneva, Switzerland, 20–21 October 2014. World Health Organization; Geneva, Switzerland: 2014. WHO Advisory Committee on Variola Virus Research; p. 14. WHO/HSE/PED/CED/2015.2.
    1. Noyce R.S., Lederman S., Evans D.H. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS ONE. 2018;13:e0188453. doi: 10.1371/journal.pone.0188453.
    1. Albarnaz J.D., Torres A.A., Smith G.L. Modulating vaccinia virus immunomodulators to improve immunological memory. Viruses. 2018;10:101. doi: 10.3390/v10030101.
    1. Baxby D. Studies in smallpox and vaccination. Rev. Med. Virol. 2002;12:201–209. doi: 10.1002/rmv.361.
    1. [(accessed on 16 December 2022)]. Available online: .
    1. Marennikova S.S., Shelukhina E.M., Maltseva N.N., Ladnyj I.D. Monkeypox—Casual agent of smallpox-like human disease. Vopr. Virusol. 1971;4:463–469.
    1. Marennikova S.S., Sheluhina E.M., Maltceva N.N., Cimiskjan K.L., Macevic G.R. Isolation and properties of the causal agent of a new variola-like disease (monkeypox) in man. Bull. World Health Organ. 1972;46:599–611.
    1. Ladnyj I.D., Ziegler P., Kima E.A. A human infection caused by monkeypox virus in Basankusu territory, Democratic Republic of the Congo. Bull. World Health Organ. 1972;46:593–597.
    1. Jezek Z., Fenner F. Monographs in Virology. Volume 14. Karger; Basel, Switzerland: 1988. Human monkeypox; pp. 1–140.
    1. Likos A.M., Sammons S.A., Olson V.A., Frace A.M., Li Y., Olsen-Rasmussen M., Davidson W., Galloway R., Khristova M.L., Reynolds M.G. A tale of two clades: Monkeypox viruses. J. Gen. Virol. 2005;86:2661–2672. doi: 10.1099/vir.0.81215-0.
    1. Gigante C.M., Korber B., Seabolt M.H., Wilkins K., Davidson W., Rao A.K., Zhao H., Smith T.G., Hughes C.M., Minhaj F., et al. Multiple lineages of monkeypox virus detected in the United States, 2021–2022. Science. 2022;378:560–565. doi: 10.1126/science.add4153.
    1. Hutson C.L., Self J., Weiss S., Carroll D.S., Hughes C.M., Braden Z.H., Olson V.A., Smith S.K., Karem K.L., Damon I.K., et al. Dosage comparison of Congo Basin and West African strains of monkeypox virus using a prairie dog animal model of systemic orthopox disease. Virology. 2010;402:72–82. doi: 10.1016/j.virol.2010.03.012.
    1. Hutson C.L., Gallardo-Romero N.F., Carroll D.S., Clemmons C., Salzer J.S., Nagy T., Hughes C.M., Olson V.A., Karem K.L., Damon I.K. Transmissibility of the monkeypox virus clades via respiratory transmission: Investigation using the prairie dog-monkeypox virus challenge system. PLoS ONE. 2013;8:e55488. doi: 10.1371/journal.pone.0055488.
    1. Hutson C.L., Carroll D.S., Gallardo-Romero N., Drew C., Zaki S.R., Nagy T., Hughes C., Olson V.A., Sanders J., Patel N., et al. Comparison of monkeypox virus clade kinetics and pathology within the prairie dog animal model using a serial sacrifice study design. BioMed Res. Int. 2015;2015:965710. doi: 10.1155/2015/965710.
    1. Rimoin A.W., Mulembakani P.M., Johnston S.C., Lloyd Smith J.O., Kisalu N.K., Kinkela T.L., Blumberg S., Thomassen H.A., Pike B.L., Fair J.N., et al. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc. Natl. Acad. Sci. USA. 2010;107:16262–16267. doi: 10.1073/pnas.1005769107.
    1. Reynolds M.G., Doty J.B., McCollum A.M., Olson V.A., Nakazawa Y. Monkeypox re-emergence in Africa: A call to expand the concept and practice of One Health. Expert Rev. Anti Infect. Ther. 2019;17:129–139. doi: 10.1080/14787210.2019.1567330.
    1. Reed K.D., Melski J.W., Graham M.B., Regnery R.L., Sotir M.J., Wegner M.V., Kazmierczak J.J., Stratman E.J., Li Y., Fairley J.A. The detection of monkeypox in humans in the Western Hemisphere. N. Engl. J. Med. 2004;350:342–350. doi: 10.1056/NEJMoa032299.
    1. Kabuga A.I., El Zowalaty M.E. A review of the monkeypox virus and a recent outbreak of skin rash disease in Nigeria. J. Med. Virol. 2019;91:533–540. doi: 10.1002/jmv.25348.
    1. Alakunle E., Moens U., Nchinda G., Okeke M.I. Monkeypox virus in Nigeria: Infection biology, epidemiology, and evolution. Viruses. 2020;12:1257. doi: 10.3390/v12111257.
    1. WHO Monkeypox. Geneva, Switzerland. [(accessed on 2 November 2022)]; Available online: .
    1. Erez N., Achdout H., Milrot E., Schwartz Y., Wiener-Well Y., Paran N., Politi B., Tamir H., Israely T., Weiss S. Diagnosis of imported monkeypox, Israel, 2018. Emerg. Infect. Dis. 2019;25:980–983. doi: 10.3201/eid2505.190076.
    1. Holloway I.W. Lessons for community-based scale-up of monkeypox vaccination from previous disease outbreaks among gay, bisexual, and other men who have sex with men in the United States. Amer. J. Public Health. 2022;112:1572–1575. doi: 10.2105/AJPH.2022.307075.
    1. Zhu M., Ji J., Shi D., Lu X., Wang B., Wu N., Wu J., Yao H., Li L. Unusual global outbreak of monkeypox: What should we do? Front. Med. 2022;16:507–517. doi: 10.1007/s11684-022-0952-z.
    1. Centers for Disease Control and Prevention (CDC) 2022 Monkeypox Outbreak Global Map. [(accessed on 31 October 2022)]; Available online: .
    1. Shchelkunov S.N. An increasing danger of zoonotic orthopoxvirus infections. PLoS Pathog. 2013;9:e1003756. doi: 10.1371/journal.ppat.1003756.
    1. Harapan H., Ophinni Y., Megawati D., Frediansyah A., Mamada S.S., Salampe M., Bin Emran T., Winardi W., Fathima R., Sirinam S., et al. Monkeypox: A comprehensive review. Viruses. 2022;14:2155. doi: 10.3390/v14102155.
    1. Czerny C.P., Eis-Hubinger A.M., Mayr A., Schneweis K.E., Pfeiff B. Animal poxviruses transmitted from cat to man: Current event with lethal end. J. Vet. Med. 1991;1338:421–431. doi: 10.1111/j.1439-0450.1991.tb00891.x.
    1. Fassbender P., Zange S., Ibrahim S., Zoeller G., Herbstreit F., Meyer H. Generalized cowpox virus infection in a patient with HIV, Germany, 2012. Emerg. Infect. Dis. 2016;22:553–555. doi: 10.3201/eid2203.151158.
    1. Ferrier A., Frenois-Veyrat G., Schvoerer E., Henard S., Jarjaval F., Drouet I., Timera H., Boutin L., Mosca E., Peyrefitte C., et al. Fatal cowpox virus infection in human fetus, France, 2017. Emerg. Infect. Dis. 2021;27:2570–2577. doi: 10.3201/eid2710.204818.
    1. Campe H., Zimmermann P., Glos K., Bayer M., Bergemann H., Dreweck C., Graf P., Weber B.K., Meyer H., Buttner M., et al. Cowpox virus transmission from pet rats to humans, Germany. Emerg. Infect. Dis. 2009;15:777–780. doi: 10.3201/eid1505.090159.
    1. Ninove L., Domart Y., Vervel C., Voinot C., Salez N., Raoult D., Meyer H., Capek I., Zandotti C., Charrel R.N. Cowpox virus transmission from pet rats to humans, France. Emerg. Infect. Dis. 2009;15:781–784. doi: 10.3201/eid1505.090235.
    1. Kurth A., Straube M., Kuczka A., Dunsche A.J., Meyer H., Nitsche A. Cowpox virus outbreak in banded mongooses (Mungos mungo) and jaguarundis (Herpailurus yagouaroundi) with a time-delayed infection to humans. PLoS ONE. 2009;4:e6883. doi: 10.1371/journal.pone.0006883.
    1. Favier A.L., Flusin O., Lepreux S., Fleury H., Labreze C., Georges A., Crance J.-M., Boralevi F. Necrotic ulcerated lesion in a young boy caused by cowpox virus infection. Case Rep. Dermatol. 2011;3:186–194. doi: 10.1159/000331426.
    1. Prkno A., Hoffmann D., Goerigk D., Kaiser M., van Maanen A.C.F., Jeske K., Jenckel M., Pfaff F., Vahlenkamp T.W., Beer M., et al. Epidemiological Investigations of Four Cowpox Virus Outbreaks in Alpaca Herds, Germany. Viruses. 2017;9:344. doi: 10.3390/v9110344.
    1. Popova A.Y., Maksyutov R.A., Taranov O.S., Tregubchak T.V., Zaikovskaya A.V., Sergeev A.A., Vlashchenko I.V., Bodnev S.A., Ternovoi V.A., Alexandrova N.S., et al. Cowpox in a human, Russia, 2015. Epidemiol. Infect. 2017;145:755–759. doi: 10.1017/S0950268816002922.
    1. Venkatesan G., Balamurugan V., Prabhu M., Yogisharadhya R., Bora D.P., Gandhale P.N., Sankar M.S.S., Kulkarni A.M., Singh R.K., Bhanuprakash V. Emerging and re-emerging zoonotic buffalopox infection: A severe outbreak in Kolhapur (Maharashtra), India. Vet. Ital. 2010;46:439–448.
    1. Singh R.K., Balamurugan V., Bhanuprakash V., Venkatesan G., Hosamani M. Emergence and reemergence of vaccinia-like viruses: Global scenario and perspectives. Indian J. Virol. 2012;23:1–11. doi: 10.1007/s13337-012-0068-1.
    1. Roy P., Chandramohan A. Buffalopox disease in livestock and milkers, India. Emerg. Infect. Dis. 2021;27:1989–1991. doi: 10.3201/eid2707.202111.
    1. Eltom K.H., Samy A.M., Abd El Wahed A., Czerny C.-P. Buffalopox virus: An emerging virus in livestock and humans. Pathogens. 2020;9:676. doi: 10.3390/pathogens9090676.
    1. Megid J., Borges I.A., Abrahao J.S., Trindade G.S., Appolinario C.M., Ribeiro M.G., Allendorf S.D., Antunes J.M., Silva-Fernandes A.T., Kroon E.G. Vaccinia virus zoonotic infection, Sao Paulo State, Brazil. Emerg. Infect. Dis. 2012;18:189–191. doi: 10.3201/eid1801.110692.
    1. De Assis F.L., Vinhote W.M., Barbosa J.D., de Oliveira C.H., de Oliveira C.M., Campos K.F., Silva N.S., Trindade G.S. Reemergence of vaccinia virus during zoonotic outbreak, Para State, Brazil. Emerg. Infect. Dis. 2013;19:2017–2020. doi: 10.3201/eid1912.130589.
    1. Abrahao J.S., Campos R.K., Trindade G.S., Guimaraes da Fonseca F., Ferreira P.C., Kroon E.G. Outbreak of severe zoonotic vaccinia virus infection, Southeastern Brazil. Emerg. Infect. Dis. 2015;21:695–698. doi: 10.3201/eid2104.140351.
    1. Peres M.G., Bacchiega T.S., Appolinario C.M., Vicente A.F., Mioni M.S.R., Ribeiro B.L.D., Fonseca C.R.S., Pelicia V.C., Ferreira F., Oliveira G.P., et al. Vaccinia virus in blood samples of humans, domestic and wild mammals in Brazil. Viruses. 2018;10:42. doi: 10.3390/v10010042.
    1. Lima M.T., Oliveira G.P., Afonso J.A.B., Souto R.J.C., de Mendonca C.L., Dantas A.F.M., Abrahao J.S., Kroon E.G. An update on the known host range of the Brazilian vaccinia virus: An outbreak in buffalo calves. Front. Microbiol. 2019;9:3327. doi: 10.3389/fmicb.2018.03327.
    1. Styczynski A., Burgado J., Walteros D., Usme-Ciro J., Laiton K., Farias A.P., Nakazawa Y., Chapman C., Davidson W., Mauldin M., et al. Seroprevalence and risk factors possibly associated with emerging zoonotic vaccinia virus in a farming community, Colombia. Emerg. Infect. Dis. 2019;25:2169–2176. doi: 10.3201/eid2512.181114.
    1. Downie A.W. The immunological relationship of the virus of spontaneous cowpox to vaccinia virus. Br. J. Exp. Pathol. 1939;20:158–176.
    1. Baxby D. The origins of vaccinia virus. J. Infect. Dis. 1977;136:453–455. doi: 10.1093/infdis/136.3.453.
    1. Tulman E.R., Delhon G., Afonso C.L., Lu Z., Zsak L., Sandybaev N.T., Kerembekova U.Z., Zaitsev V.L., Kutish G.F., Rock D.L. Genome of horsepox virus. J. Virol. 2006;80:9244–9258. doi: 10.1128/JVI.00945-06.
    1. Carroll D.S., Emerson G.L., Li Y., Sammons S., Olson V., Frace M., Nakazawa Y., Czerny C.P., Tryland M., Kolodziejek J., et al. Chasing Jenner’s vaccine: Revisiting cowpox virus classification. PLoS ONE. 2011;6:e23086. doi: 10.1371/journal.pone.0023086.
    1. Esparza J., Schrick L., Damaso C.R., Nitsche A. Equination (inoculation of horsepox): An early alternative to vaccination (inoculation of cowpox) and the potential role of horsepox virus in the origin of the smallpox vaccine. Vaccine. 2017;35:7222–7230. doi: 10.1016/j.vaccine.2017.11.003.
    1. Schrick L., Tausch S.H., Dabrowski P.W., Damaso C.R., Esparza J., Nitsche A. An early American smallpox vaccine based on horsepox. N. Engl. J. Med. 2017;377:1491–1492. doi: 10.1056/NEJMc1707600.
    1. Gubser C., Smith G.L. The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. J. Gen. Virol. 2002;83:855–872. doi: 10.1099/0022-1317-83-4-855.
    1. Bera B.C., Shanmugasundaram K., Barua S., Venkatesan G., Virmani N., Riyesh T., Gulati B.R., Bhanuprakash V., Vaid R.K., Kakker N.K., et al. Zoonotic cases of camelpox infection in India. Vet. Microbiol. 2011;26:29–38. doi: 10.1016/j.vetmic.2011.04.010.
    1. Khalafalla A.I., Abdelazim F. Human and dromedary camel infection with camelpox virus in Eastern Sudan. Vector-Borne Zoonotic Dis. 2017;17:281–284. doi: 10.1089/vbz.2016.2070.
    1. Shchelkunov S.N., Safronov P.F., Totmenin A.V., Petrov N.A., Ryazankina O.I., Gutorov V.V., Kotwal G.J. The genomic sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins. Virology. 1998;243:432–460. doi: 10.1006/viro.1998.9039.
    1. Shchelkunov S.N., Totmenin A.V., Babkin I.V., Safronov P.F., Ryazankina O.I., Petrov N.A., Gutorov V.V., Uvarova E.A., Mikheev M.V., Sisler J.R., et al. Human monkeypox and smallpox viruses: Genomic comparison. FEBS Lett. 2001;509:66–70. doi: 10.1016/S0014-5793(01)03144-1.
    1. Shchelkunov S.N., Totmenin A.V., Safronov P.F., Mikheev M.V., Gutorov V.V., Ryazankina O.I., Petrov N.A., Babkin I.V., Uvarova E.A., Sandakhchiev L.S., et al. Analysis of the monkeypox virus genome. Virology. 2002;297:172–194. doi: 10.1006/viro.2002.1446.
    1. Shchelkunov S.N. Orthopoxvirus genes that mediate disease virulence and host tropism. Adv. Virol. 2012;2012:524743. doi: 10.1155/2012/524743.
    1. Babkina I.N., Babkin I.V., Li Y., Ropp S., Kline R., Damon I., Esposito J.J., Sandakhchiev L.S., Shchelkunov S.N. Phylogenetic comparison of the genomes of different strains of variola virus. Dokl. Biochem. Biophys. 2004;398:316–320. doi: 10.1023/B:DOBI.0000046648.51758.9f.
    1. Babkin I.V., Shchelkunov S.N. The time scale in poxvirus evolution. Mol. Biol. 2006;40:16–19. doi: 10.1134/S0026893306010031.
    1. Shchelkunov S.N. How long ago did smallpox virus emerge? Arch. Virol. 2009;154:1865–1871. doi: 10.1007/s00705-009-0536-0.
    1. Babkin I.V., Babkina I.N., Tikunova N.V. An Update of orthopoxvirus molecular evolution. Viruses. 2022;14:388. doi: 10.3390/v14020388.
    1. Shchelkunov S.N. Emergence and reemergence of smallpox: The need in development of a new generation smallpox vaccine. Vaccine. 2011;29:D49–D53. doi: 10.1016/j.vaccine.2011.05.037.
    1. Ropp S.L., Jin Q.I., Knight J.C., Massung R.F., Esposito J.J. Polymerase chain reaction strategy for identification and differentiation of smallpox and other ortopoxviruses. J. Clin. Microbiol. 1995;33:2069–2076. doi: 10.1128/jcm.33.8.2069-2076.1995.
    1. Meyer H., Ropp S.L., Esposito J.J. Gene for A-type inclusion body protein is useful for a polymerase chain reaction assay to differentiate orthopoxviruses. J. Virol. Methods. 1997;64:217–221. doi: 10.1016/S0166-0934(96)02155-6.
    1. Espy M.J., Cockerill F.R., Meyer F.R., Bowen M.D., Poland G.A., Hadfield T.L., Smith T.F. Detection of smallpox virus DNA by LightCycler PCR. J. Clin. Microbiol. 2002;40:1985–1988. doi: 10.1128/JCM.40.6.1985-1988.2002.
    1. Ibrahim M.S., Kulesh D.A., Saleh S.S., Damon I.K., Esposito J.J., Schmaljohn A.L., Jahrling P.B. Real-time PCR assay to detect smallpox virus. J. Clin. Microbiol. 2003;41:3835–3839. doi: 10.1128/JCM.41.8.3835-3839.2003.
    1. Olson V.A., Laue T., Laker M.T., Babkin I.V., Drosten C., Shchelkunov S.N., Niedrig M., Damon I.K., Meyer H. Real-time PCR system for detection of orthopoxviruses and simultaneous identification of smallpox virus. J. Clin. Microbiol. 2004;42:1940–1946. doi: 10.1128/JCM.42.5.1940-1946.2004.
    1. Kulesh D.A., Baker R.O., Loveless B.M., Norwood D., Zwiers S.H., Mucker E., Hartmann C., Herrera R., Miller D., Christensen D., et al. Smallpox and pan-orthopox virus detection by real-time 3′-minor groove binder TaqMan assays on the roche LightCycler and the Cepheid smart Cycler platforms. J. Clin. Microbiol. 2004;42:601–609. doi: 10.1128/JCM.42.2.601-609.2004.
    1. Nitsche A., Ellerbrok H., Pauli G. Detection of orthopoxvirus DNA by real-time PCR and identification of variola virus DNA by melting analysis. J. Clin. Microbiol. 2004;42:1207–1213. doi: 10.1128/JCM.42.3.1207-1213.2004.
    1. Panning M., Asper M., Kramme S., Schmitz H., Drosten C. Rapid detection and differentiation of human pathogenic orthopox viruses by a fluorescence resonance energy transfer real-time PCR assay. Clin. Chem. 2004;50:702–708. doi: 10.1373/clinchem.2003.026781.
    1. Nitsche A., Steger B., Ellerbrok H., Pauli G. Detection of vaccinia virus DNA on the lightcycler by fluorescence melting curve analysis. J. Virol. Methods. 2005;126:187–195. doi: 10.1016/j.jviromet.2005.02.007.
    1. Fedele C.G., Negredo A., Molero F., Sanchez-Seco M.P., Tenorio A. Use of internally controlled real-time genome amplification for detection of variola virus and other orthopoxviruses infecting humans. J. Clin. Microbiol. 2006;44:4464–4470. doi: 10.1128/JCM.00276-06.
    1. Li Y., Olson V.A., Laue T., Laker M.T., Damon I.K. Detection of monkeypox virus with real-time PCR assays. J. Clin. Virol. 2006;36:194–203. doi: 10.1016/j.jcv.2006.03.012.
    1. Aitichou M., Saleh S., Kyusung P., Huggins J., O’Guinn M., Jahrling P., Ibrahim S. Dual-probe real-time PCR assay for detection of variola or other orthopoxviruses with dried reagents. J. Virol. Methods. 2008;153:190–195. doi: 10.1016/j.jviromet.2008.07.018.
    1. Gavrilova E.V., Shcherbakov D.N., Maksyutov R.A., Shchelkunov S.N. Development of real-time PCR assay for specific detection of cowpox virus. J. Clin. Virol. 2010;49:37–40. doi: 10.1016/j.jcv.2010.06.003.
    1. Li Y., Zhao H., Wilkins K., Hughes C., Damon I.K. Real-time PCR assays for the specific detection of monkeypox virus West African and Congo Basin strain DNA. J. Virol. Methods. 2010;169:223–227. doi: 10.1016/j.jviromet.2010.07.012.
    1. Maksyutov R.A., Gavrilova E.V., Meyer H., Shchelkunov S.N. Real-time PCR assay for specific detection of cowpox virus. J. Virol. Methods. 2015;211:8–11. doi: 10.1016/j.jviromet.2014.10.004.
    1. Li D., Wilkins K., McCollum A.M., Osadebe L., Kabamba J., Nquete B., Likafi T., Balilo M.P., Lushima R.S., Malekani J., et al. Evaluation of the GeneXpert for human monkeypox diagnosis. Am. J. Trop. Med. Hyg. 2017;96:405–410. doi: 10.4269/ajtmh.16-0567.
    1. Shchelkunov S.N., Gavrilova E.V., Babkin I.V. Multiplex PCR detection and species differentiation of orthopoxviruses pathogenic to humans. Mol. Cell. Probes. 2005;19:1–8. doi: 10.1016/j.mcp.2004.07.004.
    1. Schroeder K., Nitsche A. Multicolour, multiplex real-time PCR assay for the detection of human-pathogenic poxviruses. Mol. Cell. Probes. 2010;24:110–113. doi: 10.1016/j.mcp.2009.10.008.
    1. Shchelkunov S.N., Shcherbakov D.N., Maksyutov R.A., Gavrilova E.V. Species-specific identification of variola, monkeypox, cowpox, and vaccinia viruses by multiplex real-time PCR assay. J. Virol. Methods. 2011;175:163–169. doi: 10.1016/j.jviromet.2011.05.002.
    1. Maksyutov R.A., Gavrilova E.V., Shchelkunov S.N. Species-specific differentiation of variola, monkeypox, and varicella-zoster viruses by multiplex real-time PCR assay . J. Virol. Methods. 2016;236:215–220. doi: 10.1016/j.jviromet.2016.07.024.
    1. Lapa S., Mikheev M., Shchelkunov S., Mikhailovich V., Sobolev A., Blinov V., Babkin I., Guskov A., Sokunova E., Zasedatelev A., et al. Species-level identification of orthopoxviruses with an oligonucleotide microchip. J. Clin. Microbiol. 2002;40:753–757. doi: 10.1128/JCM.40.3.753-757.2002.
    1. Laassri M., Chizhikov V., Mikheev M., Shchelkunov S., Chumakov K. Detection and discrimination of orthopoxviruses using microarrays of immobilized oligonucleotides. J. Virol. Methods. 2003;112:67–78. doi: 10.1016/S0166-0934(03)00193-9.
    1. Ryabinin V.A., Shundrin L.A., Kostina E.B., Laassri M., Chizhikov V., Shchelkunov S.N., Chumakov K., Sinyakov A.N. Microarray assay for detection and discrimination of orthopoxvirus species. J. Med. Virol. 2006;78:1325–1340. doi: 10.1002/jmv.20698.
    1. Fitzgibbon J.E., Sagripanti J.L. Simultaneous identification of orthopoxviruses and alphaviruses by oligonucleotide macroarray with special emphasis on detection of variola and Venezuelan equine encephalitis viruses. J. Virol. Methods. 2006;131:160–167. doi: 10.1016/j.jviromet.2005.08.007.
    1. Gao J., Gigante C., Khmaladze E., Liu P., Tang S., Wilkins K., Zhao K., Davidson W., Nakazawa Y., Maghlakelidze G. Genome sequences of Akhmeta virus, an early divergent old world orthopoxvirus. Viruses. 2018;10:252. doi: 10.3390/v10050252.
    1. Gigante C.M., Gao J., Tang S., McCollum A.M., Wilkins K., Reynolds M.G., Davidson W., McLaughlin J., Olson V.A., Li Y. Genome of Alaskapox virus, A novel orthopoxvirus isolated from Alaska. Viruses. 2019;11:708. doi: 10.3390/v11080708.
    1. Sanchez-Sampedro L., Perdiguero B., Mejias-Perez E., Garcia-Arriaza J., Di Pilato M., Esteban M. The evolution of poxvirus vaccines. Viruses. 2015;7:1726–1803. doi: 10.3390/v7041726.
    1. Monath T.P., Caldwell J.R., Mundt W., Fusco J., Johnson C.S., Buller M., Liu J., Gardner B., Downing G., Blum P.S., et al. ACAM2000 clonal Vero cell culture vaccinia virus (New York City Board of Health strain)—A second-generation smallpox vaccine for biological defense. Int. J. Infect. Dis. 2004;8:31–44. doi: 10.1016/j.ijid.2004.09.002.
    1. Osborne J.D., Da Silva M., Frace A.M., Sammons S.A., Olsen-Rasmussen M., Upton C., Buller R.M., Chen N., Feng Z., Roper R.L., et al. Genomic differences of vaccinia virus clones from Dryvax smallpox vaccine: The Dryvax-like ACAM2000 and the mouse neurovirulent Clone-3. Vaccine. 2007;25:8807–8832. doi: 10.1016/j.vaccine.2007.10.040.
    1. Volz A., Sutter G. Modified vaccinia virus Ankara: History, value in basic research, and current perspectives for vaccine development. Adv. Virus Res. 2017;97:187–243. doi: 10.1016/bs.aivir.2016.07.001.
    1. Earl P.L., Americo J.L., Wyatt L.S., Eller L.A., Whitbeck J.C., Cohen G.H., Eisenberg R.J., Hartmann C.J., Jackson D.L., Kulesh D.A., et al. Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature. 2004;428:182–185. doi: 10.1038/nature02331.
    1. Sonnenburg F., Perona P., Darsow U., Ring J., von Krempelhuber A., Vollmar J., Roesch S., Baedeker N., Kollaritsch H., Chaplin P. Safety and immunogenicity of modified vaccinia Ankara as a smallpox vaccine in people with atopic dermatitis. Vaccine. 2014;32:5696–5702. doi: 10.1016/j.vaccine.2014.08.022.
    1. Overton E.T., Stapleton J., Frank I., Hassler S., Goepfert P.A., Barker D., Wagner E., von Krempelhuber A., Virgin G., Weigl J., et al. Safety and immunogenicity of Modified Vaccinia Ankara-Bavarian Nordic smallpox vaccine in vaccinia-naive and experienced human immunodeficiency virus-infected individuals: An Open-label, controlled clinical phase II trial. Open Forum Infect. Dis. 2015;2:ofv040. doi: 10.1093/ofid/ofv040.
    1. Greenberg R.N., Hay C.M., Stapleton J.T., Marbury T.C., Wagner E., Kreitmeir E., Roesch S., von Krempelhuber A., Young P., Nichols R., et al. A Randomized, double-blind, placebo-controlled phase II trial investigating the safety and immunogenicity of Modified Vaccinia Ankara smallpox vaccine (MVA-BN®) in 56–80-year-old subjects. PLoS ONE. 2016;11:e0157335. doi: 10.1371/journal.pone.0157335.
    1. Kidokoro M., Tashiro M., Shida H. Genetically stable and fully effective smallpox vaccine strain constructed from highly attenuated vaccinia LC16m8. Proc. Natl. Acad. Sci. USA. 2005;102:4152–4157. doi: 10.1073/pnas.0406671102.
    1. Eto A., Saito T., Yokote H., Kurane I., Kanatani Y. Recent advances in the study of live attenuated cell-cultured smallpox vaccine LC16m8. Vaccine. 2015;33:6106–6111. doi: 10.1016/j.vaccine.2015.07.111.
    1. Yokote H., Shinmura Y., Kanehara T., Maruno S., Kuranaga M., Matsui H., Hashizume S. Vaccinia virus strain LC16m8 defective in the B5R gene keeps strong protection comparable to its parental strain Lister in immunodeficient mice. Vaccine. 2015;33:6112–6119. doi: 10.1016/j.vaccine.2015.07.076.
    1. Iizuka I., Ami Y., Suzaki Y., Nagata N., Fukushi S., Ogata M., Morikawa S., Hasegawa H., Mizuguchi M., Kurane I., et al. A single vaccination of nonhuman primates with highly attenuated smallpox vaccine, LC16m8, provides long-term protection against monkeypox. Jpn. J. Infect. Dis. 2017;70:408–415. doi: 10.7883/yoken.JJID.2016.417.
    1. Midgley C.M., Putz M.M., Weber J.N., Smith G.L. Vaccinia virus strain NYVAC induces substantially lower and qualitatively different human antibody responses compared with strains Lister and Dryvax. J. Gen. Virol. 2008;89:2992–2997. doi: 10.1099/vir.0.2008/004440-0.
    1. Yakubitskiy S.N., Kolosova I.V., Maksyutov R.A., Shchelkunov S.N. Attenuation of Vaccinia virus. Acta Nat. 2015;7:113–121. doi: 10.32607/20758251-2015-7-4-113-121.
    1. Yakubitskiy S.N., Kolosova I.V., Maksyutov R.A., Shchelkunov S.N. Highly immunogenic variant of attenuated vaccinia virus. Dokl. Biochem. Biophys. 2016;466:35–38. doi: 10.1134/S1607672916010105.
    1. Maksyutov R.A., Yakubitskiy S.N., Kolosova I.V., Tregubchak T.V., Shvalov A.N., Gavrilova E.V., Shchelkunov S.N. Genome stability of the vaccine strain VACΔ6. Vavilovskii Zhurnal Genet. Selektsii. 2022;26:394–401. doi: 10.18699/VJGB-22-48.
    1. Smee D.F. Progress in the discovery of compounds inhibiting orthopoxviruses in animal models. Antivir. Chem. Chemother. 2008;19:115–124. doi: 10.1177/095632020801900302.
    1. Rice A.D., Adams M.M., Wallace G., Burrage A.M., Lindsey S.F., Smith A.J., Swetnam D., Manning B.R., Gray S.A., Lampert B., et al. Efficacy of CMX001 as a post exposure antiviral in New Zealand white rabbits infected with rabbitpox virus, a model for orthopoxvirus infections of humans. Viruses. 2011;3:47–62. doi: 10.3390/v3010047.
    1. Grossi I.M., Foster S.A., Gainey M.R., Krile R.T., Dunn J.A., Brundage T., Khouri J.M. Efficacy of delayed brincidofovir treatment against a lethal rabbitpox virus challenge in New Zealand white rabbits. Antivir. Res. 2017;143:278–286. doi: 10.1016/j.antiviral.2017.04.002.
    1. Perry M.R., Warren R., Merchlinsky M., Houchens C., Rogers J.V. Rabbitpox in New Zealand white rabbits: A therapeutic model for evaluation of poxvirus medical countermeasures under the FDA animal rule. Front. Cell. Infect. Microbiol. 2018;8:356. doi: 10.3389/fcimb.2018.00356.
    1. Olson V.A., Shchelkunov S.N. Are we prepared in case of a possible smallpox-like disease emergence? Viruses. 2017;9:242. doi: 10.3390/v9090242.
    1. Smith S.K., Self J., Weiss S., Carroll D., Braden Z., Regnery R.L., Davidson W., Jordan R., Hruby D.E., Damon I.K. Effective antiviral treatment of systemic orthopoxvirus disease: ST-246 treatment of prairie dogs infected with monkeypox virus. J. Virol. 2011;85:9176–9187. doi: 10.1128/JVI.02173-10.
    1. Sergeev A.A., Kabanov A.S., Bulychev L.E., Sergeev A.A., Pyankov O.V., Bodnev S.A., Galahova D.O., Zamedyanskaya A.S., Titova K.A., Glotova T.I., et al. Using the ground squirrel (Marmota bobak) as an animal model to assess monkeypox drug efficacy. Transbound. Emerg. Dis. 2017;64:226–236. doi: 10.1111/tbed.12364.
    1. Smith S.K., Olson V.A., Karem K.L., Jordan R., Hruby D.E., Damon I.K. In vitro efficacy of ST246 against smallpox and monkeypox. Antimicrob. Agents Chemother. 2009;53:1007–1012. doi: 10.1128/AAC.01044-08.
    1. Huggins J., Goff A., Hensley L., Mucker E., Shamblin J., Wlazlowski C., Johnson W., Chapman J., Larsen T., Twenhafel N., et al. Nonhuman primates are protected from smallpox virus or Monkeypox virus challenges by the antiviral drug ST-246. Antimicrob. Agents Chemother. 2009;53:2620–2625. doi: 10.1128/AAC.00021-09.
    1. Mucker E.M., Goff A.J., Shamblin J.D., Grosenbach D.W., Damon I.K., Mehal J.M., Holman R.C., Carroll D.S., Gallardo N., Olson V.A., et al. Efficacy of tecovirimat (ST-246) in nonhuman primates infected with variola virus (smallpox) Antimicrob. Agents Chemother. 2013;57:6246–6253. doi: 10.1128/AAC.00977-13.
    1. Chinsangaram J., Honeychurch K.M., Tyavanagimatt S.R., Leeds J.M., Bolken T.C., Jones K.F., Jordan R., Marbury T., Ruckle J., Mee-Lee D., et al. Safety and pharmacokinetics of the anti-orthopoxvirus compound ST-246 following a single daily oral dose for 14 days in human volunteers. Antimicrob. Agents Chemother. 2012;56:4900–4905. doi: 10.1128/AAC.00904-12.
    1. Mazurkov O.Y., Kabanov A.S., Shishkina L.N., Sergeev A.A., Skarnovich M.O., Bormotov N.I., Skarnovich M.A., Ovchinnikova A.S., Titova K.A., Galahova D.O., et al. New effective chemically synthesized anti-smallpox compound NIOCH-14. J. Gen. Virol. 2016;97:1229–1239. doi: 10.1099/jgv.0.000422.
    1. Titova K.A., Sergeev A.A., Zamedyanskaya A.S., Galahova D.O., Kabanov A.S., Morozova A.A., Bulychev L.E., Sergeev A.A., Glotova T.I., Shishkina L.N., et al. Using ICR and SCID mice as animal models for smallpox to assess antiviral drug efficacy. J. Gen. Virol. 2015;96:2832–2843. doi: 10.1099/vir.0.000216.
    1. Sergeev A.A., Kabanov A.S., Bulychev L.E., Sergeev A.A., Pyankov O.V., Bodnev S.A., Galahova D.O., Zamedyanskaya A.S., Titova K.A., Glotov A.G., et al. The possibility of using the ICR mouse as an animal model to assess antimonkeypox drug efficacy. Transbound. Emerg. Dis. 2016;63:e419–e430. doi: 10.1111/tbed.12323.
    1. Mazurkov O.Y., Shishkina L.N., Bormotov N.I., Skarnovich M.O., Serova O.A., Mazurkova N.A., Chernonosov A.A., Tikhonov A.Y., Selivanov B.A. Estimation of absolute bioavailability of the chemical substance of the anti-smallpox preparation NIOCH-14 in mice. Bull. Exp. Biol. Med. 2020;170:207–210. doi: 10.1007/s10517-020-05034-x.
    1. Zaitseva M., McCullough K.T., Cruz S., Thomas A., Diaz C.G., Keilholz L., Grossi I.M., Trost L.C., Golding H. Postchallenge administration of brincidofovir protects healthy and immune-deficient mice reconstituted with limited numbers of T cells from lethal challenge with IHD-J-Luc vaccinia virus. J. Virol. 2015;89:3295–3307. doi: 10.1128/JVI.03340-14.
    1. Chittick G., Morrison M., Brundage T., Nichols W.G. Short-term clinical safety profile of brincidofovir: A favorable benefit-risk proposition in the treatment of smallpox. Antivir. Res. 2017;143:269–277. doi: 10.1016/j.antiviral.2017.01.009.
    1. Chan-Tack K., Harrington P., Bensman T., Choi S.Y., Donaldson E., O’Rear J., McMillan D., Myers L., Seaton M., Ghantous H., et al. Benefit-risk assessment for brincidofovir for the treatment of smallpox: U.S. Food and Drug Administration’s evaluation. Antivir. Res. 2021;195:105182. doi: 10.1016/j.antiviral.2021.105182.
    1. Alcami A., Damon L., Evans D., Huggins J.W., Hughes C., Jahrling P.B., McFadden G., Meyer H., Moss B., Shchelkunov S., et al. Scientific Review of Variola Virus Research, 1999–2010. World Health Organization; Geneva, Switzerland: 2010. 128p

Source: PubMed

3
订阅