Single nuclei profiling identifies cell specific markers of skeletal muscle aging, frailty, and senescence

Kevin Perez, Serban Ciotlos, Julia McGirr, Chandani Limbad, Ryosuke Doi, Joshua P Nederveen, Mats I Nilsson, Daniel A Winer, William Evans, Mark Tarnopolsky, Judith Campisi, Simon Melov, Kevin Perez, Serban Ciotlos, Julia McGirr, Chandani Limbad, Ryosuke Doi, Joshua P Nederveen, Mats I Nilsson, Daniel A Winer, William Evans, Mark Tarnopolsky, Judith Campisi, Simon Melov

Abstract

Aging is accompanied by a loss of muscle mass and function, termed sarcopenia, which causes numerous morbidities and economic burdens in human populations. Mechanisms implicated in age-related sarcopenia or frailty include inflammation, muscle stem cell depletion, mitochondrial dysfunction, and loss of motor neurons, but whether there are key drivers of sarcopenia are not yet known. To gain deeper insights into age-related muscle loss, we performed transcriptome profiling on lower limb muscle biopsies from 72 young, elderly, and frail human subjects using bulk RNA-seq (N = 72) and single-nuclei RNA-seq (N = 17). This combined approach revealed changes in gene expression that occur with age and frailty in multiple cell types comprising mature skeletal muscle. Notably, we found increased expression of the genes MYH8 and PDK4, and decreased expression of the gene IGFN1, in aged muscle. We validated several key genes changes in fixed human muscle tissue using digital spatial profiling. We also identified a small population of nuclei that express CDKN1A, present only in aged samples, consistent with p21cip1-driven senescence in this subpopulation. Overall, our findings identify unique cellular subpopulations in aged and sarcopenic skeletal muscle, which will facilitate the development of new therapeutic strategies to combat age-related frailty.

Keywords: aging; muscle; sarcopenia; senescence; transcriptomics.

Conflict of interest statement

CONFLICTS OF INTEREST: The authors declare no conflicts of interest related to this study.

Figures

Figure 1
Figure 1
Bulk RNA-seq identifies major gene expression changes in muscle with age. (A) Principal component analysis (PCA) of bulk young, old and frail skeletal muscle. (left) Young (less than 20 years old) in blue, old (more than 65 years old) in red. (right) Young (blue), old (red), frail subjects (green). (B) Volcano plot of expression changes in old vs. young muscle. Labelled top 30 by abs (logFC) × -loglO (p-value). (C) Log (CPM) of MYH8, COL19Al, MTRNL8, CDKNlA, CDKN2B, AREG in young (green), old (blue) and frail subjects (red). Boxplot shows 25% percentile, 75% percentile and median. Stars were added when significant compared to young healthy (q < .01). (D) Number of DEGs per comparison. (E) Pathway analysis of dysregulated genes with age using KEGG, GO database (GSEA).
Figure 2
Figure 2
Single-nuclei sequencing reveals 7 clusters of unique cell types, and differential gene expression with age. (A) Uniform Manifold Approximation and Projection (UMAP) of 5′ single nuclei sequencing of human muscle. All samples are shown, after data normalization and Louvain clustering. (B) Top 20 differentially expressed genes (DEG), in old vs. young samples. All cells from all cell types are used in this test. Wilcoxon test, top 20 DEGs by logFC. (C) Expression of PDK4 and IGFNl in young and old samples.
Figure 3
Figure 3
Common and cell-type specific gene expression changes with age. Significant differentially expressed genes (DEG) in old versus young samples. A Wilcoxon test was performed for each gene in each cell type between samples, with a logFold-Change (logFC) threshold of .25, and False-Discovery Rate (FDR) <1%. Red is upregulated with age, blue is downregulated. (A) All DEGs are shown by cell type. (B) Top 20 DEGs are shown by cell type, ranked by absolute logFC.
Figure 4
Figure 4
mRNA translation, gamma interferon and complement cascade are upregulated in selective cell types with aging. Pathway analysis of top 100 up-regulated and top 100 down-regulated genes with age in each cell type. GO, KEGG, Reactome pathways were queried. Over-representation was assessed using a hyper-geometric test at FDR 1%. (A) Upregulated with age. (B) Downregulated with age.
Figure 5
Figure 5
Identification of a small population of senescent cells in the fast skeletal muscle. (A) Subtypes of fast-skeletal muscle cells (UMAP, all samples). (B) Cluster 5 is circled, with expression of LRRK2, CDKN1A, MYH8, COL19A1 and TNNT3. (C) Difference in proportions between young and old for all subtypes. Significance of the t-test between young and old is shown at the top of 5C.
Figure 6
Figure 6
Reorganization of muscle fibers with age revealed by spatial transcriptomics. (A) Young muscle fibers, several ROls are shown in yellow delineating individual sections of distinct fibers. Desmin (blue), Syto83 (green), aSMA (yellow), CD68 (red). (B) Differentially expressed genes in old versus young spatial profiled muscle. (C) log (counts) of top differentially expressed genes.
Figure 7
Figure 7
Validation of senescent markers in cultured human muscle cells. Quantitative PCR (qPCR) of CDKN1A, MYH8, COL19A1, LRRK2, EDA2R and PDK4 after 7 days of incubation in senescent vs. non-senescent cells. Senescence was induced using Doxorubicin in a cell line of Myogenic Progenitor cells (un-differentiated cells, left) and Myotubes (differentiated HSMMs, right). Expression is shown relative to Actin. 3 replicates in each condition/gene.

References

    1. Waltz TB, Fivenson EM, Morevati M, Li C, Becker KG, Bohr VA, Fang EF. Sarcopenia, Aging and Prospective Interventional Strategies. Curr Med Chem. 2018; 25:5588–96. 10.2174/0929867324666170801095850
    1. Koster A, Ding J, Stenholm S, Caserotti P, Houston DK, Nicklas BJ, You T, Lee JS, Visser M, Newman AB, Schwartz AV, Cauley JA, Tylavsky FA, et al., and Health ABC study. Does the amount of fat mass predict age-related loss of lean mass, muscle strength, and muscle quality in older adults? J Gerontol A Biol Sci Med Sci. 2011; 66:888–95. 10.1093/gerona/glr070
    1. Lexell J, Taylor CC, Sjöström M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988; 84:275–94. 10.1016/0022-510x(88)90132-3
    1. Yoo SZ, No MH, Heo JW, Park DH, Kang JH, Kim SH, Kwak HB. Role of exercise in age-related sarcopenia. J Exerc Rehabil. 2018; 14:551–8. 10.12965/jer.1836268.134
    1. Law TD, Clark LA, Clark BC. Resistance Exercise to Prevent and Manage Sarcopenia and Dynapenia. Annu Rev Gerontol Geriatr. 2016; 36:205–28. 10.1891/0198-8794.36.205
    1. Ogawa S, Yakabe M, Akishita M. Age-related sarcopenia and its pathophysiological bases. Inflamm Regen. 2016; 36:17. 10.1186/s41232-016-0022-5
    1. Kim TN, Choi KM. Sarcopenia: definition, epidemiology, and pathophysiology. J Bone Metab. 2013; 20:1–10. 10.11005/jbm.2013.20.1.1
    1. Giresi PG, Stevenson EJ, Theilhaber J, Koncarevic A, Parkington J, Fielding RA, Kandarian SC. Identification of a molecular signature of sarcopenia. Physiol Genomics. 2005; 21:253–63. 10.1152/physiolgenomics.00249.2004
    1. Welle S, Brooks AI, Delehanty JM, Needler N, Thornton CA. Gene expression profile of aging in human muscle. Physiol Genomics. 2003; 14:149–59. 10.1152/physiolgenomics.00049.2003
    1. Miljkovic N, Lim JY, Miljkovic I, Frontera WR. Aging of skeletal muscle fibers. Ann Rehabil Med. 2015; 39:155–62. 10.5535/arm.2015.39.2.155
    1. Melov S, Tarnopolsky MA, Beckman K, Felkey K, Hubbard A. Resistance exercise reverses aging in human skeletal muscle. PLoS One. 2007; 2:e465. 10.1371/journal.pone.0000465
    1. Robinson MM, Dasari S, Konopka AR, Johnson ML, Manjunatha S, Esponda RR, Carter RE, Lanza IR, Nair KS. Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans. Cell Metab. 2017; 25:581–92. 10.1016/j.cmet.2017.02.009
    1. Campisi J, Andersen JK, Kapahi P, Melov S. Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol. 2011; 21:354–9. 10.1016/j.semcancer.2011.09.001
    1. Blagosklonny MV. Anti-aging: senolytics or gerostatics (unconventional view). Oncotarget. 2021; 12:1821–35. 10.18632/oncotarget.28049
    1. Baar MP, Perdiguero E, Muñoz-Cánoves P, de Keizer PL. Musculoskeletal senescence: a moving target ready to be eliminated. Curr Opin Pharmacol. 2018; 40:147–55. 10.1016/j.coph.2018.05.007
    1. Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, Gil J, Hara E, Krizhanovsky V, et al.. Cellular Senescence: Defining a Path Forward. Cell. 2019; 179:813–27. 10.1016/j.cell.2019.10.005
    1. Basisty N, Kale A, Jeon OH, Kuehnemann C, Payne T, Rao C, Holtz A, Shah S, Sharma V, Ferrucci L, Campisi J, Schilling B. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 2020; 18:e3000599. 10.1371/journal.pbio.3000599
    1. Zhu C, Preissl S, Ren B. Single-cell multimodal omics: the power of many. Nat Methods. 2020; 17:11–4. 10.1038/s41592-019-0691-5
    1. Barruet E, Garcia SM, Striedinger K, Wu J, Lee S, Byrnes L, Wong A, Xuefeng S, Tamaki S, Brack AS, Pomerantz JH. Functionally heterogeneous human satellite cells identified by single cell RNA sequencing. Elife. 2020; 9:e51576. 10.7554/eLife.51576
    1. De Micheli AJ, Laurilliard EJ, Heinke CL, Ravichandran H, Fraczek P, Soueid-Baumgarten S, De Vlaminck I, Elemento O, Cosgrove BD. Single-Cell Analysis of the Muscle Stem Cell Hierarchy Identifies Heterotypic Communication Signals Involved in Skeletal Muscle Regeneration. Cell Rep. 2020; 30:3583–95.e5. 10.1016/j.celrep.2020.02.067
    1. Dos Santos M, Backer S, Saintpierre B, Izac B, Andrieu M, Letourneur F, Relaix F, Sotiropoulos A, Maire P. Single-nucleus RNA-seq and FISH identify coordinated transcriptional activity in mammalian myofibers. Nat Commun. 2020; 11:5102. 10.1038/s41467-020-18789-8
    1. Kim M, Franke V, Brandt B, Lowenstein ED, Schöwel V, Spuler S, Akalin A, Birchmeier C. Single-nucleus transcriptomics reveals functional compartmentalization in syncytial skeletal muscle cells. Nat Commun. 2020; 11:6375. 10.1038/s41467-020-20064-9
    1. Orchard P, Manickam N, Ventresca C, Vadlamudi S, Varshney A, Rai V, Kaplan J, Lalancette C, Mohlke KL, Gallagher K, Burant CF, Parker SCJ. Human and rat skeletal muscle single-nuclei multi-omic integrative analyses nominate causal cell types, regulatory elements, and SNPs for complex traits. Genome Res. 2021; 31:2258–75. 10.1101/gr.268482.120
    1. Petrany MJ, Swoboda CO, Sun C, Chetal K, Chen X, Weirauch MT, Salomonis N, Millay DP. Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers. Nat Commun. 2020; 11:6374. 10.1038/s41467-020-20063-w
    1. Rubenstein AB, Smith GR, Raue U, Begue G, Minchev K, Ruf-Zamojski F, Nair VD, Wang X, Zhou L, Zaslavsky E, Trappe TA, Trappe S, Sealfon SC. Single-cell transcriptional profiles in human skeletal muscle. Sci Rep. 2020; 10:229. 10.1038/s41598-019-57110-6
    1. Ding J, Adiconis X, Simmons SK, Kowalczyk MS, Hession CC, Marjanovic ND, Hughes TK, Wadsworth MH, Burks T, Nguyen LT, Kwon JYH, Barak B, Ge W, et al.. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol. 2020; 38:737–46. 10.1038/s41587-020-0465-8
    1. Wolfien M, Galow AM, Müller P, Bartsch M, Brunner RM, Goldammer T, Wolkenhauer O, Hoeflich A, David R. Single nuclei sequencing of entire mammalian hearts: strain-dependent cell-type composition and velocity. Cardiovasc Res. 2020; 116:1249–51. 10.1093/cvr/cvaa054
    1. Leung ML, Wang Y, Kim C, Gao R, Jiang J, Sei E, Navin NE. Highly multiplexed targeted DNA sequencing from single nuclei. Nat Protoc. 2016; 11:214–35. 10.1038/nprot.2016.005
    1. Ceafalan LC, Popescu BO, Hinescu ME. Cellular players in skeletal muscle regeneration. Biomed Res Int. 2014; 2014:957014. 10.1155/2014/957014
    1. Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip Rev Syst Biol Med. 2020; 12:e1462. 10.1002/wsbm.1462
    1. Merritt CR, Ong GT, Church SE, Barker K, Danaher P, Geiss G, Hoang M, Jung J, Liang Y, McKay-Fleisch J, Nguyen K, Norgaard Z, Sorg K, et al.. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat Biotechnol. 2020; 38:586–99. 10.1038/s41587-020-0472-9
    1. Tarnopolsky MA, Pearce E, Smith K, Lach B. Suction-modified Bergström muscle biopsy technique: experience with 13,500 procedures. Muscle Nerve. 2011; 43:717–25. 10.1002/mus.21945
    1. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB, Shardell MD, et al.. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014; 69:547–58. 10.1093/gerona/glu010
    1. Shavlakadze T, Morris M, Fang J, Wang SX, Zhu J, Zhou W, Tse HW, Mondragon-Gonzalez R, Roma G, Glass DJ. Age-Related Gene Expression Signature in Rats Demonstrate Early, Late, and Linear Transcriptional Changes from Multiple Tissues. Cell Rep. 2019; 28:3263–73.e3. 10.1016/j.celrep.2019.08.043
    1. Lehallier B, Gate D, Schaum N, Nanasi T, Lee SE, Yousef H, Moran Losada P, Berdnik D, Keller A, Verghese J, Sathyan S, Franceschi C, Milman S, et al.. Undulating changes in human plasma proteome profiles across the lifespan. Nat Med. 2019; 25:1843–50. 10.1038/s41591-019-0673-2
    1. Migliavacca E, Tay SKH, Patel HP, Sonntag T, Civiletto G, McFarlane C, Forrester T, Barton SJ, Leow MK, Antoun E, Charpagne A, Seng Chong Y, Descombes P, et al.. Mitochondrial oxidative capacity and NAD+ biosynthesis are reduced in human sarcopenia across ethnicities. Nat Commun. 2019; 10:5808. 10.1038/s41467-019-13694-1
    1. Celis-Morales CA, Welsh P, Lyall DM, Steell L, Petermann F, Anderson J, Iliodromiti S, Sillars A, Graham N, Mackay DF, Pell JP, Gill JMR, Sattar N, Gray SR. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: prospective cohort study of half a million UK Biobank participants. BMJ. 2018; 361:k1651.
    1. Jovanovich S, Bashkin J, Chear K, Lasken R, Lee S, Leisz B, Meyer D, Novotny M, Pereira N, Scheuermann RH. Automated processing of solid tissues into single cells or nuclei for sequencing. AGBT Conference 2020 poster presentation. 2020.
    1. Karjalainen J, Tikkanen H, Hernelahti M, Kujala UM. Muscle fiber-type distribution predicts weight gain and unfavorable left ventricular geometry: a 19 year follow-up study. BMC Cardiovasc Disord. 2006; 6:2. 10.1186/1471-2261-6-2
    1. Nederveen JP, Joanisse S, Snijders T, Ivankovic V, Baker SK, Phillips SM, Parise G. Skeletal muscle satellite cells are located at a closer proximity to capillaries in healthy young compared with older men. J Cachexia Sarcopenia Muscle. 2016; 7:547–54. 10.1002/jcsm.12105
    1. Kadi F, Charifi N, Denis C, Lexell J. Satellite cells and myonuclei in young and elderly women and men. Muscle Nerve. 2004; 29:120–7. 10.1002/mus.10510
    1. McKay BR, Toth KG, Tarnopolsky MA, Parise G. Satellite cell number and cell cycle kinetics in response to acute myotrauma in humans: immunohistochemistry versus flow cytometry. J Physiol. 2010; 588:3307–20. 10.1113/jphysiol.2010.190876
    1. De Micheli AJ, Spector JA, Elemento O, Cosgrove BD. A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations. Skelet Muscle. 2020; 10:19. 10.1186/s13395-020-00236-3
    1. Belotti E, Schaeffer L. Regulation of Gene expression at the neuromuscular Junction. Neurosci Lett. 2020; 735:135163. 10.1016/j.neulet.2020.135163
    1. Ibebunjo C, Chick JM, Kendall T, Eash JK, Li C, Zhang Y, Vickers C, Wu Z, Clarke BA, Shi J, Cruz J, Fournier B, Brachat S, et al.. Genomic and proteomic profiling reveals reduced mitochondrial function and disruption of the neuromuscular junction driving rat sarcopenia. Mol Cell Biol. 2013; 33:194–212. 10.1128/MCB.01036-12
    1. Landi F, Calvani R, Lorenzi M, Martone AM, Tosato M, Drey M, D'Angelo E, Capoluongo E, Russo A, Bernabei R, Onder G, Marzetti E. Serum levels of C-terminal agrin fragment (CAF) are associated with sarcopenia in older multimorbid community-dwellers: Results from the ilSIRENTE study. Exp Gerontol. 2016; 79:31–6. 10.1016/j.exger.2016.03.012
    1. Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011; 91:1447–531. 10.1152/physrev.00031.2010
    1. Schiaffino S, Rossi AC, Smerdu V, Leinwand LA, Reggiani C. Developmental myosins: expression patterns and functional significance. Skelet Muscle. 2015; 5:22. 10.1186/s13395-015-0046-6
    1. Verdijk LB, Snijders T, Drost M, Delhaas T, Kadi F, van Loon LJ. Satellite cells in human skeletal muscle; from birth to old age. Age (Dordr). 2014; 36:545–7. 10.1007/s11357-013-9583-2
    1. Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, McCarthy DJ, Marioni JC, Teichmann SA. Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 2016; 17:29. 10.1186/s13059-016-0888-1
    1. Perez CF. On the footsteps of Triadin and its role in skeletal muscle. World J Biol Chem. 2011; 2:177–83.
    1. Leung C, Murad KBA, Tan ALT, Yada S, Sagiraju S, Bode PK, Barker N. Lgr5 Marks Adult Progenitor Cells Contributing to Skeletal Muscle Regeneration and Sarcoma Formation. Cell Rep. 2020; 33:108535. 10.1016/j.celrep.2020.108535
    1. Zhang X, Habiballa L, Aversa Z, Ng YE, Sakamoto AE, Englund DA, Pearsall VM, White TA, Robinson MM, Rivas DA, Dasari S, Hruby AJ, Lagnado AB, et al.. Characterization of cellular senescence in aging skeletal muscle. Nat Aging. 2022; 2:601–15. 10.1038/s43587-022-00250-8
    1. Talbot J, Maves L. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdiscip Rev Dev Biol. 2016; 5:518–34. 10.1002/wdev.230
    1. Nilwik R, Snijders T, Leenders M, Groen BB, van Kranenburg J, Verdijk LB, van Loon LJ. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp Gerontol. 2013; 48:492–8. 10.1016/j.exger.2013.02.012
    1. Lexell J. Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci. 1995; 50:11–6. 10.1093/gerona/50a.special_issue.11
    1. Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008; 6:2853–68. 10.1371/journal.pbio.0060301
    1. Fernandes AF, Bian Q, Jiang JK, Thomas CJ, Taylor A, Pereira P, Shang F. Proteasome inactivation promotes p38 mitogen-activated protein kinase-dependent phosphatidylinositol 3-kinase activation and increases interleukin-8 production in retinal pigment epithelial cells. Mol Biol Cell. 2009; 20:3690–9. 10.1091/mbc.e08-10-1068
    1. Samant SA, Pillai VB, Gupta MP. Skeletal muscle-specific over-expression of the nuclear sirtuin SIRT6 blocks cancer-associated cachexia by regulating multiple targets. JCSM Rapid Commun. 2021; 4:40–56. 10.1002/rco2.27
    1. Zhao Y, Bai X, Jia X, Lu Y, Cheng W, Shu M, Zhu Y, Zhu L, Wang L, Shu Y, Song Y, Jin S. Age-related changes of human serum Sirtuin6 in adults. BMC Geriatr. 2021; 21:452. 10.1186/s12877-021-02399-0
    1. Samant SA, Kanwal A, Pillai VB, Bao R, Gupta MP. The histone deacetylase SIRT6 blocks myostatin expression and development of muscle atrophy. Sci Rep. 2017; 7:11877. 10.1038/s41598-017-10838-5
    1. Kong KF, Delroux K, Wang X, Qian F, Arjona A, Malawista SE, Fikrig E, Montgomery RR. Dysregulation of TLR3 impairs the innate immune response to West Nile virus in the elderly. J Virol. 2008; 82:7613–23. 10.1128/JVI.00618-08
    1. Agrawal A, Agrawal S, Cao JN, Su H, Osann K, Gupta S. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J Immunol. 2007; 178:6912–22. 10.4049/jimmunol.178.11.6912
    1. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001; 22:153–83. 10.1210/edrv.22.2.0428
    1. Khalil A, Morgan RN, Adams BR, Golding SE, Dever SM, Rosenberg E, Povirk LF, Valerie K. ATM-dependent ERK signaling via AKT in response to DNA double-strand breaks. Cell Cycle. 2011; 10:481–91. 10.4161/cc.10.3.14713
    1. Fan Y, Chen Y, Zhang J, Yang F, Hu Y, Zhang L, Zeng C, Xu Q. Protective Role of RNA Helicase DEAD-Box Protein 5 in Smooth Muscle Cell Proliferation and Vascular Remodeling. Circ Res. 2019; 124:e84–100. 10.1161/CIRCRESAHA.119.314062
    1. Demaria M, O'Leary MN, Chang J, Shao L, Liu S, Alimirah F, Koenig K, Le C, Mitin N, Deal AM, Alston S, Academia EC, Kilmarx S, et al.. Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discov. 2017; 7:165–76. 10.1158/-16-0241
    1. Limbad C, Doi R, McGirr J, Ciotlos S, Perez K, Clayton ZS, Daya R, Seals DR, Campisi J, Melov S. Senolysis induced by 25-hydroxycholesterol targets CRYAB in multiple cell types. iScience. 2022; 25:103848. 10.1016/j.isci.2022.103848
    1. Francis TG, Jaka O, Ellison-Hughes GM, Lazarus NR, Harridge SDR. Human primary skeletal muscle-derived myoblasts and fibroblasts reveal different senescent phenotypes. JCSM Rapid Communications. 2022; 5:226–38. 10.1002/rco2.67
    1. Yamaguchi T, Arai H, Katayama N, Ishikawa T, Kikumoto K, Atomi Y. Age-related increase of insoluble, phosphorylated small heat shock proteins in human skeletal muscle. J Gerontol A Biol Sci Med Sci. 2007; 62:481–9. 10.1093/gerona/62.5.481
    1. Kusko RL, Banerjee C, Long KK, Darcy A, Otis J, Sebastiani P, Melov S, Tarnopolsky M, Bhasin S, Montano M. Premature expression of a muscle fibrosis axis in chronic HIV infection. Skelet Muscle. 2012; 2:10. 10.1186/2044-5040-2-10
    1. Yoshimoto Y, Ikemoto-Uezumi M, Hitachi K, Fukada SI, Uezumi A. Methods for Accurate Assessment of Myofiber Maturity During Skeletal Muscle Regeneration. Front Cell Dev Biol. 2020; 8:267. 10.3389/fcell.2020.00267
    1. Brosh R, Sarig R, Natan EB, Molchadsky A, Madar S, Bornstein C, Buganim Y, Shapira T, Goldfinger N, Paus R, Rotter V. p53-dependent transcriptional regulation of EDA2R and its involvement in chemotherapy-induced hair loss. FEBS Lett. 2010; 584:2473–7. 10.1016/j.febslet.2010.04.058
    1. Hudgins AD, Tazearslan C, Tare A, Zhu Y, Huffman D, Suh Y. Age- and Tissue-Specific Expression of Senescence Biomarkers in Mice. Front Genet. 2018; 9:59. 10.3389/fgene.2018.00059
    1. Li X, Baker J, Cracknell T, Haynes AR, Blanco G. IGFN1_v1 is required for myoblast fusion and differentiation. PLoS One. 2017; 12:e0180217. 10.1371/journal.pone.0180217
    1. Pilegaard H, Neufer PD. Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise. Proc Nutr Soc. 2004; 63:221–6. 10.1079/pns2004345
    1. Kim YI, Lee FN, Choi WS, Lee S, Youn JH. Insulin regulation of skeletal muscle PDK4 mRNA expression is impaired in acute insulin-resistant states. Diabetes. 2006; 55:2311–7. 10.2337/db05-1606
    1. Holness MJ, Bulmer K, Gibbons GF, Sugden MC. Up-regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) protein expression in oxidative skeletal muscle does not require the obligatory participation of peroxisome-proliferator-activated receptor alpha (PPARalpha). Biochem J. 2002; 366:839–46. 10.1042/BJ20020754
    1. Zhang S, Hulver MW, McMillan RP, Cline MA, Gilbert ER. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr Metab (Lond). 2014; 11:10. 10.1186/1743-7075-11-10
    1. Smith LK, He Y, Park JS, Bieri G, Snethlage CE, Lin K, Gontier G, Wabl R, Plambeck KE, Udeochu J, Wheatley EG, Bouchard J, Eggel A, et al.. β2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat Med. 2015; 21:932–7. 10.1038/nm.3898
    1. Bandrés E, Merino J, Vázquez B, Inogés S, Moreno C, Subirá ML, Sánchez-Ibarrola A. The increase of IFN-gamma production through aging correlates with the expanded CD8(+high)CD28(-)CD57(+) subpopulation. Clin Immunol. 2000; 96:230–5. 10.1006/clim.2000.4894
    1. Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018; 15:505–22. 10.1038/s41569-018-0064-2
    1. Wang J, Leung KS, Chow SK, Cheung WH. Inflammation and age-associated skeletal muscle deterioration (sarcopaenia). J Orthop Translat. 2017; 10:94–101. 10.1016/j.jot.2017.05.006
    1. Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HH, van Loon LJ. Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab. 2007; 292:E151–7. 10.1152/ajpendo.00278.2006
    1. Dolgin E. Send in the senolytics. Nat Biotechnol. 2020; 38:1371–7. 10.1038/s41587-020-00750-1
    1. Varani J, Dame MK, Rittie L, Fligiel SE, Kang S, Fisher GJ, Voorhees JJ. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol. 2006; 168:1861–8. 10.2353/ajpath.2006.051302
    1. Papadopoli D, Boulay K, Kazak L, Pollak M, Mallette F, Topisirovic I, Hulea L. mTOR as a central regulator of lifespan and aging. F1000Res. 2019; 8. 10.12688/f1000research.17196.1
    1. Tang H, Inoki K, Brooks SV, Okazawa H, Lee M, Wang J, Kim M, Kennedy CL, Macpherson PCD, Ji X, Van Roekel S, Fraga DA, Wang K, et al.. mTORC1 underlies age-related muscle fiber damage and loss by inducing oxidative stress and catabolism. Aging Cell. 2019; 18:e12943. 10.1111/acel.12943
    1. Wang Y, Wehling-Henricks M, Samengo G, Tidball JG. Increases of M2a macrophages and fibrosis in aging muscle are influenced by bone marrow aging and negatively regulated by muscle-derived nitric oxide. Aging Cell. 2015; 14:678–88. 10.1111/acel.12350
    1. Wang YX, Holbrook CA, Hamilton JN, Garoussian J, Afshar M, Su S, Schürch CM, Lee MY, Goltsev Y, Kundaje A, Nolan GP, Blau HM. A single cell spatial temporal atlas of skeletal muscle reveals cellular neighborhoods that orchestrate regeneration and become disrupted in aging. 2022. 10.1101/2022.06.10.494732
    1. Kedlian VR, Wang Y, Liu T, Chen X, Bolt L, Shen Z, Fasouli ES, Prigmore E, Kleshchevnikov V, Li T, Lawrence JE, Huang N, Guo Q, et al.. Human skeletal muscle ageing atlas. 2022. 10.1101/2022.05.24.493094
    1. Riedl I, Yoshioka M, Nishida Y, Tobina T, Paradis R, Shono N, Tanaka H, St-Amand J. Regulation of skeletal muscle transcriptome in elderly men after 6 weeks of endurance training at lactate threshold intensity. Exp Gerontol. 2010; 45:896–903. 10.1016/j.exger.2010.08.014
    1. Calvo AC, Cibreiro GA, Merino PT, Roy JF, Galiana A, Rufián AJ, Cano JM, Martín MA, Moreno L, Larrodé P, Vázquez PC, Galán L, Mora J, et al.. Collagen XIX Alpha 1 Improves Prognosis in Amyotrophic Lateral Sclerosis. Aging Dis. 2019; 10:278–92. 10.14336/AD.2018.0917
    1. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, Hao Y, Stoeckius M, Smibert P, Satija R. Comprehensive Integration of Single-Cell Data. Cell. 2019; 177:1888–902.e21. 10.1016/j.cell.2019.05.031
    1. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102:15545–50. 10.1073/pnas.0506580102
    1. Khan M, Yoo SJ, Clijsters M, Backaert W, Vanstapel A, Speleman K, Lietaer C, Choi S, Hether TD, Marcelis L, Nam A, Pan L, Reeves JW, et al.. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell. 2021; 184:5932–49.e15. 10.1016/j.cell.2021.10.027

Source: PubMed

3
订阅