Sphingomyelin Synthase 1 (SMS1) Downregulation Is Associated With Sphingolipid Reprogramming and a Worse Prognosis in Melanoma

Fatima Bilal, Anne Montfort, Julia Gilhodes, Virginie Garcia, Joëlle Riond, Stéphane Carpentier, Thomas Filleron, Céline Colacios, Thierry Levade, Ahmad Daher, Nicolas Meyer, Nathalie Andrieu-Abadie, Bruno Ségui, Fatima Bilal, Anne Montfort, Julia Gilhodes, Virginie Garcia, Joëlle Riond, Stéphane Carpentier, Thomas Filleron, Céline Colacios, Thierry Levade, Ahmad Daher, Nicolas Meyer, Nathalie Andrieu-Abadie, Bruno Ségui

Abstract

Sphingolipid (SL) metabolism alterations have been frequently reported in cancer including in melanoma, a bad-prognosis skin cancer. In normal cells, de novo synthesized ceramide is mainly converted to sphingomyelin (SM), the most abundant SL, by sphingomyelin synthase 1 (SMS1) and, albeit to a lesser extent, SMS2, encoded by the SGMS1 and SGMS2 genes, respectively. Alternatively, ceramide can be converted to glucosylceramide (GlcCer) by the GlcCer synthase (GCS), encoded by the UGCG gene. Herein, we provide evidence for the first time that SMS1 is frequently downregulated in various solid cancers, more particularly in melanoma. Accordingly, various human melanoma cells displayed a SL metabolism signature associated with (i) a robust and a low expression of UGCG and SGMS1/2, respectively, (ii) higher in situ enzyme activity of GCS than SMS, and (iii) higher intracellular levels of GlcCer than SM. SMS1 was expressed at low levels in most of the human melanoma biopsies. In addition, several mutations and increased CpG island methylation in the SGMS1 gene were identified that likely affect SMS1 expression. Finally, low SMS1 expression was associated with a worse prognosis in metastatic melanoma patients. Collectively, our study indicates that SMS1 downregulation in melanoma enhances GlcCer synthesis, triggering an imbalance in the SM/GlcCer homeostasis, which likely contributes to melanoma progression. Evaluating SMS1 expression level in tumor samples might serve as a biomarker to predict clinical outcome in advanced melanoma patients.

Keywords: cancer; ceramide; glucosylceramide; prognosis biomarker; sphingolipids.

Figures

Figure 1
Figure 1
Sphingomyelin synthase 1 (SMS1) is frequently downregulated in melanoma. (A) cDNA samples isolated from normal (N) and tumor (T) tissues from the same patient were compared. Expression of SGMS1 (left panel) and ubiquitin (right panel). (B) The SGMS1 expression was normalized to ubiquitin and expressed for each pair in normal skin and melanoma samples. (C)SGMS1 expression was analyzed in 3 different cohorts from Oncomine in normal Skin (n = 4), primary (PM; n = 14), and metastatic (MM; n = 39) melanoma (Ricker’s cohort) (left panel); in nevus (n = 9), primary (PM; n = 6), and metastatic (MM; n = 19) melanoma (Haqq’s cohort) (middle panel); in nevus (n = 18) and primary melanoma (PM; n = 45) (Talantov’s cohort) (right panel). (D) The expression of SGMS1 was analyzed in various cancer type cohorts from cbioportal. (E) The expression of UGCG, SGMS1, and SGMS2 was analyzed in melanoma samples from the TCGA metastatic melanoma patients (n = 342). (F) A set of melanoma cell lines (n = 10) was analyzed for the expression of UGCG, SGMS1, and SGMS2 by RT-qPCR (n = 10). Data from at least two independent experiments are means ± SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ∗∗∗p < 0.0001.
Figure 2
Figure 2
Sphingomyelin synthase 1 downregulation is associated with a worse prognosis in advanced melanoma patients. (A,B) A set of melanoma cell lines (n = 10) was analyzed for SLs by mass spectrometry (A) and GCS and SMS enzyme activities (B). Data from one experiment representative of three independent experiments are means ± SEM. (C)SGMS1 expression in melanoma samples from the TCGA melanoma cohort (n = 342) (left panel) and overall survival of patients exhibiting low (n = 68), medium (n = 206), and high (n = 68) SGMS1 expression (right panel). Cox model: SGMS1low (Reference), SGMS1medium: HR = 0.62 [95% CI = 0.44; 0.88] p = 0.007; SGMS1high: HR = 0.48 [95% CI 0.31; 0.76] p = 0.002. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

References

    1. Albinet V., Bats M. L., Huwiler A., Rochaix P., Chevreau C., Segui B., et al. (2014). Dual role of sphingosine kinase-1 in promoting the differentiation of dermal fibroblasts and the dissemination of melanoma cells. Oncogene 33 3364–3373. 10.1038/onc.2013.303
    1. Bairoch A. (2018). The cellosaurus, a cell-line knowledge resource. J. Biomol. Tech. 29 25–38. 10.7171/jbt.18-2902-002
    1. Bilal F., Peres M., Andrieu-Abadie N., Levade T., Badran B., Daher A., et al. (2017a). Method to measure sphingomyelin synthase activity changes in response to CD95L. Methods Mol. Biol. 1557 207–212. 10.1007/978-1-4939-6780-3_19
    1. Bilal F., Peres M., Le Faouder P., Dupuy A., Bertrand-Michel J., Andrieu-Abadie N., et al. (2017b). Liquid chromatography-high resolution mass spectrometry method to study sphingolipid metabolism changes in response to CD95L. Methods Mol. Biol. 1557 213–217. 10.1007/978-1-4939-6780-3_20
    1. Cancer Genome Atlas Network (2015). Genomic classification of cutaneous melanoma. Cell 161 1681–1696. 10.1016/j.cell.2015.05.044
    1. Cerami E., Gao J., Dogrusoz U., Gross B. E., Sumer S. O., Aksoy B. A., et al. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2 401–404. 10.1158/-12-0095
    1. Colie S., Van Veldhoven P. P., Kedjouar B., Bedia C., Albinet V., Sorli S. C., et al. (2009). Disruption of sphingosine 1-phosphate lyase confers resistance to chemotherapy and promotes oncogenesis through Bcl-2/Bcl-xL upregulation. Cancer Res. 69 9346–9353. 10.1158/0008-5472.CAN-09-2198
    1. Deng W., Li R., Guerrera M., Liu Y., Ladisch S. (2002). Transfection of glucosylceramide synthase antisense inhibits mouse melanoma formation. Glycobiology 12 145–152. 10.1093/glycob/12.3.145
    1. Eroglu Z., Ribas A. (2016). Combination therapy with BRAF and MEK inhibitors for melanoma: latest evidence and place in therapy. Ther. Adv. Med. Oncol. 8 48–56. 10.1177/1758834015616934
    1. Gao J., Aksoy B. A., Dogrusoz U., Dresdner G., Gross B., Sumer S. O., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6:l1. 10.1126/scisignal.2004088
    1. Hannun Y. A. (1996). Functions of ceramide in coordinating cellular responses to stress. Science 274 1855–1859. 10.1126/science.274.5294.1855
    1. Hannun Y. A., Obeid L. M. (2002). The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J. Biol. Chem. 277 25847–25850. 10.1074/jbc.r200008200
    1. Haqq C., Nosrati M., Sudilovsky D., Crothers J., Khodabakhsh D., Pulliam B. L., et al. (2005). The gene expression signatures of melanoma progression. Proc. Natl. Acad. Sci. U.S.A. 102 6092–6097.
    1. Hayashi Y., Nemoto-Sasaki Y., Matsumoto N., Hama K., Tanikawa T., Oka S., et al. (2018). Complex formation of sphingomyelin synthase 1 with glucosylceramide synthase increases sphingomyelin and decreases glucosylceramide levels. J. Biol. Chem. 293 17505–17522. 10.1074/jbc.RA118.002048
    1. Hodis E., Watson I. R., Kryukov G. V., Arold S. T., Imielinski M., Theurillat J. P., et al. (2012). A landscape of driver mutations in melanoma. Cell 150 251–263.
    1. Huitema K., Van Den Dikkenberg J., Brouwers J. F., Holthuis J. C. (2004). Identification of a family of animal sphingomyelin synthases. EMBO J. 23 33–44. 10.1038/sj.emboj.7600034
    1. Lafont E., Milhas D., Carpentier S., Garcia V., Jin Z. X., Umehara H., et al. (2010). Caspase-mediated inhibition of sphingomyelin synthesis is involved in FasL-triggered cell death. Cell Death Differ. 17 642–654. 10.1038/cdd.2009.130
    1. Lavie Y., Cao H., Volner A., Lucci A., Han T. Y., Geffen V., et al. (1997). Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J. Biol. Chem. 272 1682–1687. 10.1074/jbc.272.3.1682
    1. Leclerc J., Garandeau D., Pandiani C., Gaudel C., Bille K., Nottet N., et al. (2018). Lysosomal acid ceramidase Asah1 controls the transition between invasive and proliferative phenotype in melanoma cells. Oncogene 38 1282–1295. 10.1038/s41388-018-0500-0
    1. Liu Y. Y., Gupta V., Patwardhan G. A., Bhinge K., Zhao Y., Bao J., et al. (2010). Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling. Mol. Cancer 9:145. 10.1186/1476-4598-9-145
    1. Liu Y. Y., Han T. Y., Yu J. Y., Bitterman A., Le A., Giuliano A. E., et al. (2004). Oligonucleotides blocking glucosylceramide synthase expression selectively reverse drug resistance in cancer cells. J. Lipid Res. 45 933–940. 10.1194/jlr.m300486-jlr200
    1. Moorthi S., Burns T. A., Yu G. Q., Luberto C. (2018). Bcr-Abl regulation of sphingomyelin synthase 1 reveals a novel oncogenic-driven mechanism of protein up-regulation. FASEB J. 32 4270–4283. 10.1096/fj.201701016R
    1. Mrad M., Imbert C., Garcia V., Rambow F., Therville N., Carpentier S., et al. (2016). Downregulation of sphingosine kinase-1 induces protective tumor immunity by promoting M1 macrophage response in melanoma. Oncotarget 7 71873–71886. 10.18632/oncotarget.12380
    1. Ogretmen B., Hannun Y. A. (2004). Biologically active sphingolipids in cancer pathogenesis and treatment. Nat. Rev. Cancer 4 604–616. 10.1038/nrc1411
    1. Riker A. I., Enkemann S. A., Fodstad O., Liu S., Ren S., Morris C., et al. (2008). The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med. Genomics 1:13. 10.1186/1755-8794-1-13
    1. Segui B., Andrieu-Abadie N., Jaffrezou J. P., Benoist H., Levade T. (2006). Sphingolipids as modulators of cancer cell death: potential therapeutic targets. Biochim. Biophys. Acta 1758 2104–2120. 10.1016/j.bbamem.2006.05.024
    1. Sharma P., Hu-Lieskovan S., Wargo J. A., Ribas A. (2017). Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168 707–723. 10.1016/j.cell.2017.01.017
    1. Sorli S. C., Colie S., Albinet V., Dubrac A., Touriol C., Guilbaud N., et al. (2013). The nonlysosomal beta-glucosidase GBA2 promotes endoplasmic reticulum stress and impairs tumorigenicity of human melanoma cells. FASEB J. 27 489–498. 10.1096/fj.12-215152
    1. Sun Y. L., Zhou G. Y., Li K. N., Gao P., Zhang Q. H., Zhen J. H., et al. (2006). Suppression of glucosylceramide synthase by RNA interference reverses multidrug resistance in human breast cancer cells. Neoplasma 53 1–8.
    1. Talantov D., Mazumder A., Yu J. X., Briggs T., Jiang Y., Backus J., et al. (2005). Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin. Cancer Res. 11 7234–7242. 10.1158/1078-0432.ccr-05-0683
    1. Veldman R. J., Mita A., Cuvillier O., Garcia V., Klappe K., Medin J. A., et al. (2003). The absence of functional glucosylceramide synthase does not sensitize melanoma cells for anticancer drugs. FASEB J. 17 1144–1146. 10.1096/fj.02-1053fje
    1. Vladychenskaya I. P., Dergunova L. V., Dmitrieva V. G., Limborska S. A. (2004). Human gene MOB: structure specification and aspects of transcriptional activity. Gene 338 257–265. 10.1016/j.gene.2004.06.003
    1. Weiss M., Hettmer S., Smith P., Ladisch S. (2003). Inhibition of melanoma tumor growth by a novel inhibitor of glucosylceramide synthase. Cancer Res. 63 3654–3658.
    1. Yamaoka S., Miyaji M., Kitano T., Umehara H., Okazaki T. (2004). Expression cloning of a human CDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase-defective lymphoid cells. J. Biol. Chem. 279 18688–18693. 10.1074/jbc.m401205200

Source: PubMed

3
订阅