Field Effectiveness of Drones to Identify Potential Aedes aegypti Breeding Sites in Household Environments from Tapachula, a Dengue-Endemic City in Southern Mexico

Kenia Mayela Valdez-Delgado, David A Moo-Llanes, Rogelio Danis-Lozano, Luis Alberto Cisneros-Vázquez, Adriana E Flores-Suarez, Gustavo Ponce-García, Carlos E Medina-De la Garza, Esteban E Díaz-González, Ildefonso Fernández-Salas, Kenia Mayela Valdez-Delgado, David A Moo-Llanes, Rogelio Danis-Lozano, Luis Alberto Cisneros-Vázquez, Adriana E Flores-Suarez, Gustavo Ponce-García, Carlos E Medina-De la Garza, Esteban E Díaz-González, Ildefonso Fernández-Salas

Abstract

Aedes aegypti control programs require more sensitive tools in order to survey domestic and peridomestic larval habitats for dengue and other arbovirus prevention areas. As a consequence of the COVID-19 pandemic, field technicians have faced a new occupational hazard during their work activities in dengue surveillance and control. Safer strategies to monitor larval populations, in addition to minimum householder contact, are undoubtedly urgently needed. Drones can be part of the solution in urban and rural areas that are dengue-endemic. Throughout this study, the proportion of larvae breeding sites found in the roofs and backyards of houses were assessed using drone images. Concurrently, the traditional ground field technician's surveillance was utilized to sample the same house groups. The results were analyzed in order to compare the effectiveness of both field surveillance approaches. Aerial images of 216 houses from El Vergel village in Tapachula, Chiapas, Mexico, at a height of 30 m, were obtained using a drone. Each household was sampled indoors and outdoors by vector control personnel targeting all the containers that potentially served as Aedes aegypti breeding sites. The main results were that the drone could find 1 container per 2.8 found by ground surveillance; however, containers that were inaccessible by technicians in roofs and backyards, such as plastic buckets and tubs, disposable plastic containers and flowerpots were more often detected by drones than traditional ground surveillance. This new technological approach would undoubtedly improve the surveillance of Aedes aegypti in household environments, and better vector control activities would therefore be achieved in dengue-endemic countries.

Keywords: Aedes aegypti; Tapachula; breeding sites; drone; mosquito surveillance.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Geographical representation of the study area, El Vergel neighborhood, north of Tapachula city and municipality, in the far southeast of Chiapas, Mexico. The black rectangles represent the study dwellings.
Figure 2
Figure 2
Drone images of larvae breeding sites on the roofs of houses in El Vergel, Tapachula, Chiapas, in (a) elevated storage tank; (b) tires; (c) others (puddles); (d) disposable plastic containers, (e) flowerpots and (f) plastic bucket & tubs.
Figure 3
Figure 3
Drone images of larvae breeding sites in outdoor (backyard) areas of houses in El Vergel, Tapachula, Chiapas, in (a) disposable plastic container; (b) plastic buckets and tubs; (c) cement washbasins (large); (d) WCs; (e) flowerpots; and (f) other (pools).

References

    1. Huy N.T., Van Giang T., Thuy D.H.D., Kikuchi M., Hien T.T., Zamora J., Hirayama K. Factors associated with dengue shock syndrome: A system review and meta-analysis. PLoS Negl. Trop. Dis. 2013;7:e2412. doi: 10.1371/journal.pntd.0002412.
    1. Arredondo-García J.L., Aguilar-López E.C.G., Lugo-Gerez A.J.J., Osnaya-Romero N., Pérez-Guillé G., Medina-Cortina H. Panorama epidemiológico de dengue en Mexico 2000–2019. Rev. Latinoam. Infect. Pediatrica. 2020;33:78–83. doi: 10.35366/94418.
    1. World Health Organization . Global Strategy for Dengue Prevention and Control 2012–2020. WHO; Geneva, Switzerland: 2012. p. 14.
    1. World Health Organization . Report of the Consultation on Key Issues in Dengue Vector Control Toward the Operationalization of a Global Strategy. WHO; Geneva, Switzerland: 1995. p. 48. CTD/FIL(DEN)/IC/95.WP.3.4.1.
    1. World Health Organization . Strengthening Implementation of the Global Strategy for Dengue Fever/Dengue Haemorrhagic Fever Prevention and Control. WHO; Geneva, Switzerland: 2000. p. 10. Report of the Informal Consultation 18–20 October 1999; Document WHO/CDS/(DEN)/ IC/2000.1.
    1. Focks D.A., Chadee D. Pupal survey: An epidemiologically significant surveillance method for Aedes aegypti: An example using from Trinidad. Am. J. Trop. Med. Hyg. 1997;56:159–167. doi: 10.4269/ajtmh.1997.56.159.
    1. Tun-Lin W., Kay B.H., Barnes A. The Premise Condition Index: A tool for streamlining surveys of Aedes aegypti. Am. J. Trop. Med. Hyg. 1995;53:591–594. doi: 10.4269/ajtmh.1995.53.591.
    1. Tun-Lin W., Kay B.H., Barnes A., Forsyth S. Critical examination of Aedes aegypti indices: Correlations with abundance. Am. J. Trop. Med. Hyg. 1996;54:543–547. doi: 10.4269/ajtmh.1996.54.543.
    1. Focks D.A. A Review of Entomological Sampling Methods and Indicators for Dengue Vectors. WHO; Geneva, Switzerland: 2004. [(accessed on 10 October 2020)]. UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases; p. 36. TDR/IDE/Den/03.1. Available online: . TDR/IDE/Den/03.1.
    1. Bowman L.R., Runge-Ranzinger S., McCall P.J. Assessing the Relationship between Vector Indices and Dengue Transmission: A Systematic Review of the Evidence. PLoS Negl. Trop. Dis. 2014;8:e2848. doi: 10.1371/journal.pntd.0002848.
    1. Garjito T.A., Hidajat M.C., Kinansi R.R., Setyaningsih R., Anggraeni Y.M., Trapsilowati W., Satoto T.B.T., Gavotte L., Manguin S., Frutos R. Stegomyia Indices and Risk of Dengue Transmission: A Lack of Correlation. Front. Public Health. 2020;8:328. doi: 10.3389/fpubh.2020.00328.
    1. Manrique-Saide P., Che-Mendoza A., Rizzo N., Arana B., Pilger D., Lenhart A., Kroeger A. Operational Guide for Assessing the Productivity of Aedes Aegypti Breeding Sites. UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases; Geneva, Switzerland: 2011. p. 30.
    1. Diario Oficial de la Federación NORMA Oficial Mexicana NOM-032-SSA2-2014, Para la Vigilancia Epidemiológica, Promoción, Prevención y Control de las Enfermedades Transmitidas por Vectores. [(accessed on 2 December 2020)]; DOF: 16/04/2015. Available online: .
    1. Organización Panamericana de la Salud . Evaluación de las Estrategias Innovadoras para el Control de Aedes aegypti: Desafíos para su Introducción y Evaluación del Impacto. Organización Panamericana de la Salud; Washington, DC, USA: 2019. p. 62. eISBN 978-92-75-32097-6.
    1. Dantés H.G., Manrique-Saide P., Vazquez-Prokopec G., Correa Morales F., Siqueira Junior J.B., Pimenta F., Coehlo G., Bezerra H. Prevention and control of Aedes transmitted infections in the post-pandemic scenario of COVID-19: Challenges and opportunities for the region of the Americas. Mem. Inst. Oswaldo Cruz. 2020;115:e200284. doi: 10.1590/0074-02760200284.
    1. Wilson R.L. Ethical issues with use of Drone aircraft; Proceedings of the 2014 IEEE International Symposium on Ethics in Science, Technology and Engineering, ETHICS 2014; Chicago, IL, USA. 23–24 May 2014; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers Inc.; 2014.
    1. Luppicini R., So A. A technoethical review of commercial drone use in the context of governance, ethics, and privacy. Technol. Soc. 2016;46:109–119. doi: 10.1016/j.techsoc.2016.03.003.
    1. Nex F., Remondino F. UAV for 3D mapping application: A review. Appl. Geomat. 2014;6:1–15. doi: 10.1007/s12518-013-0120-x.
    1. Landau K.I., Van Leeuwen W.J. Fine scale spatial urban land cover factors associated with adult mosquito abundance and risk in Tucson, Arizona. J. Vector Ecol. 2012;37:407–418. doi: 10.1111/j.1948-7134.2012.00245.x.
    1. Instituto Nacional de Estadistica. Geografía e Informática Censo de Poblacion y Vivienda 2010. MEX-INEGI 40.201.01-CPV-2010. [(accessed on 10 November 2020)]; Available online:
    1. Arredondo-Jiménez J.I., Valdez-Delgado K.M. Aedes aegypti pupal/demographic surveys in southern Mexico: Consistency and practicality. Ann. Trop. Med. Parasitol. 2006;100:S17–S32. doi: 10.1179/136485906X105480.
    1. Dirección General de Aeronáutica Civil Circular Obligatoria que Establece los Requerimientos Para Operar un Sistema de Aeronave Pilotada a Distancia (RPAS) en el Espacio Aéreo Mexicano. [(accessed on 16 October 2020)];2017 :55. Available online: .
    1. Phantom 4 DJI® User Manual. [(accessed on 16 October 2020)]; Available online: .
    1. DJI®GO 4 App. [(accessed on 16 October 2020)]; Available online: .
    1. Case E., Shragai T., Harrington L., Ren Y., Morreale S., Erickson D. Evaluation of Unmanned Aerial Vehicles and Neural Networks for Integrated Mosquito Management of Aedes albopictus (Diptera: Culicidae) J. Med. Entomol. 2020;57:1588–1595. doi: 10.1093/jme/tjaa078.
    1. Moloney J.M., Skelly C., Weinstein P., Maguire M., Ritchie S. Domestic Aedes aegypti breeding site surveillance: Limitations of remote sensing as a predictive surveillance tool. Am. J. Trop. Med. Hyg. 1998;59:261–264. doi: 10.4269/ajtmh.1998.59.261.
    1. Suduwella C., Amarasinghe A., Niroshan L., Elvitigala C., De Zoysa K., Keppetiyagama C. Identifying Mosquito Breeding Sites via Drone Images; Proceedings of the 3rd Workshop on Micro Aerial Vehicle Networks, Systems, and Applications-DroNet’17; New York, NY, USA. 23 June 2017; pp. 27–30. Association for Computing Machinery.
    1. Team GIMP GIMP: GNU Image Manipulation Program. [(accessed on 1 October 2020)];GIMP Team. 2019 Available online:
    1. Requena-Méndez A., Aldasoro E., Muñoz J., Moore D.A.J. Robust and Reproducible Quantification of the Extent of Chest Radiographic Abnormalities (And It’s Free!) PLoS ONE. 2015;10:e0128044. doi: 10.1371/journal.pone.0128044.
    1. Antunes N., Schiefenhovel W., d’Errico F., Banks W.E., Vanhaeren M. Quantitative methods demonstrate that environment alone is an insufficient predictor of present-day language distributions in New Guinea. PLoS ONE. 2020;15:e0239359. doi: 10.1371/journal.pone.0239359.
    1. Barrera R., Acevedo V., Amador M. Role of Abandoned and Vacant Houses on Aedes aegypti Productivity. Am. J. Trop. Med. Hyg. 2021;104:145–150. doi: 10.4269/ajtmh.20-0829.
    1. Pan American Health Organization . Control of Aedes Aegypti in the Scenario of Simultaneous Transmission of COVID-19. PAHO; Washington, DC, USA: 2020. [(accessed on 23 January 2021)]. p. 6. Technical and Scientific Products. Available online: . Technical and Scientific Products.
    1. Ruiz-Cabrejos J., Moreno M., Bickersmith S., Saavedra M., Prussing C., Gamboa D., Manrique E., Conn J.E., Alava F., Vinetz J.M., et al. High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery. PLoS Negl. Trop. Dis. 2019;13:e0007105. doi: 10.1371/journal.pntd.0007105.
    1. Sarira T.V., Clarke K., Weinstein P., Koh L.P., Lewis M. Rapid identification of shallow inundation for mosquito disease mitigation using drone-derived multispectral imagery. Geospat. Health. 2020;15:101–108. doi: 10.4081/gh.2020.851.
    1. Passos W.L., da Silva E.A.B., Netto S.L., Araujo G.M., de Lima A.A. Spatio-temporal Consistency to Detect Potential Aedes aegypti Breeding Grounds in Aerial Video Sequences. arXiv. 20202007.14863

Source: PubMed

3
订阅